簡易檢索 / 詳目顯示

研究生: 陳孟群
Chen, Meng-Chun
論文名稱: 以射頻磁控濺鍍法製備氧化鋅基透明導電膜與薄膜電晶體及其特性探討
The fabrications and investigations of ZnO based TCO and TFTs by rf. sputtering deposition method
指導教授: 朱聖緣
Chu, Sheng-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 71
中文關鍵詞: 射頻磁控濺鍍法非結晶相氧化銦鎵鋅薄膜電晶體
外文關鍵詞: rf-sputtering, amorphous, InGaZnO, thin-film transistor
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,光電產業蓬勃發展,全球液晶面板業目前最熱門的話題即是IGZO技術應用在最先進液晶顯示器製品,因此驅動顯示器的開關元件「薄膜電晶體」(TFT)就顯得格外重要。由於薄膜電晶體的好壞將會大幅的影響顯示器的性能,因此如何改善薄膜電晶體的品質、以及降低生產成本,一直都是研究與生產上努力的目標。
    本論文採用射頻磁控濺鍍法來製備氧化銦鎵鋅薄膜,第一部分:以GIXRD之材料分析手法探討不同UV-Ozone照光時間應用於GZO透明導電薄膜其常溫與變溫之電特性變化。第二部份:採用三種不同退火溫度作為對薄膜的處理並以XPS、AFM、以及Contact Angle等儀器分析薄膜之材料特性與觀察薄膜之微結構。第三部分:經由一系列的分析,成功製備出高飽和場效載子遷移率為9.61 cm2/Vs,高開關比Ion/Ioff ~107,最佳次臨界擺幅S.S=0.29V/decade 之電晶體。
    最後,根據最佳的退火溫度參數,將元件穩定性以變溫量測(NBTS)以及薄膜電晶體之磁滯效應(Hysteresis)加以討論。

    In recent years, the optoelectronics industry has well developed. The IGZO technology used in the cutting-edge display products has been the currently hottest topic in global LCD display industry, in this way the driving device of the LCD display - "thin film transistor" (TFT) is particularly important. The quality of TFTs will dramatically affect the performance of the LCD display, so how to improve the quality of thin-film transistors, as well as lower production cost, has been the goal of the research and production efforts.
    In this study, we use rf magnetron sputtering method to fabricate GaZnO transparent conductive oxide and InGaZnO thin-film transistors. First Part: The Investigation of the GaZnO TCO Film Hall measurement in Room-Temp & Temp-Dependent two conditions through GIXRD technique. Second Part: We use XPS, AFM, and Contact Angle technique to identify the relationship between InGaZnO thin-film transistors with various annealing temperature. Third Part: We also examine the InGaZnO TFT devices characteristic and stability via Negative Bias Temperature Stability (NBTS) and hysteresis.

    摘要 I ABSTRACT II 致謝 III TABLE OF CONTENTS IV LIST OF TABLES VI LIST OF FIGURES VII CHAPTER 1 INTRODUCTION 1 1.1 PREFACE 1 1.2 MOTIVATION 1 1.3 ORGANIZATION OF THIS THESIS 2 CHAPTER 2 THEORY AND LITERATURE REVIEW 4 2.1 ZINC OXIDE 4 2.2 OVERVIEW OF TRANSPARENT CONDUCTIVE OXIDE 6 2.3 OVERVIEW OF THIN FILM TRANSISTOR 8 2.4 BASIC OPERATION OF THIN FILM TRANSISTOR 12 2.5 THIN-FILM TRANSISTOR CHARACTERISTIC PARAMETERS 15 2.6 PHYSICS VAPOR DEPOSITION SYSTEM 18 2.6.1 Physics Vapor Deposition Method 18 2.6.2 RF magnetron sputtering 19 2.6.3 The principle of R.F magnetron sputtering 19 CHAPTER 3 EXPERIMENTS AND MEASUREMENT TECHNIQUES 21 3.1 EXPERIMENTAL METHODS 21 3.1.1 GaZnO TCO thin-films fabrication Process 21 3.1.2 TFT Device fabrication Process 22 3.2 CHARACTERIZATION FOR MATERIALS AND DEVICES 24 3.2.1 X-ray photoelectron spectroscopy (XPS) 24 3.2.2 X-ray diffraction spectroscopy 25 3.2.3 UV transmittance and absorption 25 3.2.4 Atomic force microscope(AFM) 26 3.2.5 Surface Energy 27 3.2.6 Measurement of GaZnO TCO characteristics 27 3.2.7 Measurement of InGaZnO TFT characteristics 29 CHAPTER 4 RESULTS AND DISCUSSIONS 30 4.1 THE INVESTIGATION OF THE ZNO:GA TCO FILM SCATTERING MECHANISM 30 4.2 BASIC IGZO TFT DEVICE ELECTRICAL PROPERTIES 42 4.3 MATERIAL ANALYSIS OF IGZO THIN-FILMS 43 4.3.1 XPS spectra of Annealing treated IGZO films 43 4.3.2 Contact Angle 48 4.3.3 AFM 50 4.4 THE ELECTRICAL PROPERTIES OF A-IGZO TFT WITH VARIOUS ANNEALING TEMPERATURE 54 4.5 NEGATIVE BIAS TEMPERATURE STABILITY OF IGZO TFT 56 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS 64 5.1 CONCLUSIONS 64 5.2 FUTURE WORK 64 REFERENCE 66

    [1] H. Afify, S. EL-Hafnawi, A. Eliwa, M. Abdel-Naby, and N. Ahmed, "Realization and characterization of ZnO/n-Si solar cells by spray pyrolysis," Egypt. J. Solids, vol. 28, pp. 243-254, 2005.
    [2] L. Saad and M. Riad, "Characterization of various zinc oxide catalysts and their activity in the dehydration-dehydrogenation of isobutanol," Journal of the Serbian Chemical Society, vol. 73, 2008.
    [3] A. Menzel, K. Subannajui, F. Güder, D. Moser, O. Paul, and M. Zacharias, "Multifunctional ZnO‐Nanowire‐Based Sensor," Advanced Functional Materials, vol. 21, pp. 4342-4348, 2011.
    [4] C. Lin and Y. Chen, "A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED," IEEE electron device letters, vol. 28, p. 129, 2007.
    [5] H. Lee, Y.-C. Lin, H.-P. D. Shieh, and J. Kanicki, "Current-scaling a-Si: H TFT pixel-electrode circuit for AM-OLEDs: Electrical properties and stability," Electron Devices, IEEE Transactions on, vol. 54, pp. 2403-2410, 2007.
    [6] W.-T. Chen, S.-Y. Lo, S.-C. Kao, H.-W. Zan, C.-C. Tsai, J.-H. Lin, et al., "Oxygen-dependent instability and annealing/passivation effects in amorphous In–Ga–Zn–O thin-film transistors," Electron Device Letters, IEEE, vol. 32, pp. 1552-1554, 2011.
    [7] O. Fouad, A. Ismail, Z. Zaki, and R. Mohamed, "Zinc oxide thin films prepared by thermal evaporation deposition and its photocatalytic activity," Applied Catalysis B: Environmental, vol. 62, pp. 144-149, 2006.
    [8] M. Kaid and A. Ashour, "Preparation of ZnO-doped Al films by spray pyrolysis technique," Applied surface science, vol. 253, pp. 3029-3033, 2007.
    [9] S. S. Badadhe and I. Mulla, "Effect of aluminium doping on structural and gas sensing properties of zinc oxide thin films deposited by spray pyrolysis," Sensors and Actuators B: Chemical, vol. 156, pp. 943-948, 2011.
    [10] P. Carcia, R. McLean, M. Reilly, and G. Nunes Jr, "Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering," Applied Physics Letters, vol. 82, pp. 1117-1119, 2003.
    [11] M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, "Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)," Thin Solid Films, vol. 403, pp. 485-488, 2002.
    [12] A. El-Shaer, A. C. Mofor, A. Bakin, M. Kreye, and A. Waag, "High-quality ZnO layers grown by MBE on sapphire," Superlattices and Microstructures, vol. 38, pp. 265-271, 2005.
    [13] M. Ohyama, H. Kouzuka, and T. Yoko, "Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution," Thin solid films, vol. 306, pp. 78-85, 1997.
    [14] A. Bakin, A. El‐Shaer, A. C. Mofor, M. Al‐Suleiman, E. Schlenker, and A. Waag, "ZnMgO‐ZnO quantum wells embedded in ZnO nanopillars: Towards realisation of nano‐LEDs," physica status solidi (c), vol. 4, pp. 158-161, 2007.
    [15] 陳育昇, "以最佳化氧處理製作高效能氧化鋅薄膜電晶體之研究," 臺灣大學光電工程學研究所學位論文, pp. 1-52, 2007.
    [16] S. SeobáLee and S. HwanáKo, "Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel," Nanoscale, vol. 4, pp. 6408-6414, 2012.
    [17] Y.-D. Ko, K.-C. Kim, and Y.-S. Kim, "Effects of substrate temperature on the Ga-doped ZnO films as an anode material of organic light emitting diodes," Superlattices and Microstructures, vol. 51, pp. 933-941, 2012.
    [18] D.-J. Yun, K. Hong, S. h. Kim, W.-M. Yun, J.-y. Jang, W.-S. Kwon, et al., "Multiwall carbon nanotube and poly (3, 4-ethylenedioxythiophene): polystyrene sulfonate (PEDOT: PSS) composite films for transistor and inverter devices," ACS applied materials & interfaces, vol. 3, pp. 43-49, 2011.
    [19] Y. Lin, T. Chen, L. Wang, and S. Lien, "Comparison of AZO, GZO, and AGZO Thin Films TCOs Applied for a-Si Solar Cells," Journal of The Electrochemical Society, vol. 159, pp. H599-H604, 2012.
    [20] S. Liu, D. Wuu, S. Ou, Y. Fu, P. Lin, M. Hung, et al., "Highly ultraviolet-transparent ZnO: Al conducting layers by pulsed laser deposition," Journal of The Electrochemical Society, vol. 158, pp. K127-K130, 2011.
    [21] H.-K. Kim, K.-J. Ahn, H. Jang, and H. Lee, "Dependence of Electrical, Optical, and Structural Properties on the Thickness of GZO Films Prepared by CRMS," Journal of The Electrochemical Society, vol. 159, pp. H38-H43, 2011.
    [22] E. Fortunato, A. Goncalves, V. Assuncao, A. Marques, H. Águas, L. Pereira, et al., "Growth of ZnO: Ga thin films at room temperature on polymeric substrates: thickness dependence," Thin Solid Films, vol. 442, pp. 121-126, 2003.
    [23] T. Nam, C. W. Lee, H. J. Kim, and H. Kim, "Growth Characteristics and Properties of Ga-doped ZnO (GZO) Thin Films Grown by Thermal and Plasma-enhanced Atomic Layer Deposition," Applied Surface Science, 2014.
    [24] J. S. Zhang, H. D. Yang, B. Huang, S. Yu, and L. X. Zeng, "Effect of Vacuum Annealing Temperature on Properties of Ga-Doped ZnO Films Deposited by DC Magnetron Reactive Sputtering," Advanced Materials Research, vol. 485, pp. 348-351, 2012.
    [25] C. Chu, C. Huang, L. Kao, C. Chou, C. Hsu, C. Chen, et al., "Structure and properties of GZO thin films grown on ZnO buffer layers," Superlattices and Microstructures, vol. 49, pp. 158-168, 2011.
    [26] J. S. E. LILIENFELD, "Method and apparatus for controlling electric currents," ed: Google Patents, 1930.
    [27] P. Weimer, "An evaporated thin-film triode," Electron Devices, IRE Transactions on, vol. 8, pp. 421-421, 1961.
    [28] M. Shur and M. Hack, "Physics of amorphous silicon based alloy field‐effect transistors," Journal of applied physics, vol. 55, pp. 3831-3842, 1984.
    [29] T. Brody, J. A. Asars, and G. D. Dixon, "A 6× 6 inch 20 lines-per-inch liquid-crystal display panel," Electron Devices, IEEE Transactions on, vol. 20, pp. 995-1001, 1973.
    [30] S. Depp, A. Juliana, and B. Huth, "Polysilicon FET devices for large area input/output applications," in Electron Devices Meeting, 1980 International, 1980, pp. 703-706.
    [31] A. Juliana, S. Depp, B. Huth, and T. Sedgwick, "Thin-Film Polysilicon Devices for Flat-Panel Display Circuitry," in SID International Symposium Digest of Technical Papers, 1982, pp. 38-39.
    [32] T. Nishimura, Y. Akasaka, H. Nakata, A. Ishizu, and T. Matsumoto, "Characteristics of TFT fabricated in laser-recrystallized polysilicon for active LC display," in PROCEEDINGS OF THE SID, 1982, pp. 209-213.
    [33] T. Kamiya, K. Nomura, and H. Hosono, "Present status of amorphous In–Ga–Zn–O thin-film transistors," Science and Technology of Advanced Materials, vol. 11, p. 044305, 2010.
    [34] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Japanese journal of applied physics, vol. 45, p. 4303, 2006.
    [35] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
    [36] J. Raja, K. Jang, H. H. Nguyen, T. T. Trinh, W. Choi, and J. Yi, "Enhancement of electrical stability of a-IGZO TFTs by improving the surface morphology and packing density of active channel," Current Applied Physics, vol. 13, pp. 246-251, 2013.
    [37] C.-C. Lo and T.-E. Hsieh, "Preparation of IGZO sputtering target and its applications to thin-film transistor devices," Ceramics International, vol. 38, pp. 3977-3983, 2012.
    [38] C.-S. Fuh, S. M. Sze, P.-T. Liu, L.-F. Teng, and Y.-T. Chou, "Role of environmental and annealing conditions on the passivation-free in-Ga–Zn–O TFT," Thin Solid Films, vol. 520, pp. 1489-1494, 2011.
    [39] D. A. Neamen, "Semiconductor Physics & Devices: Basic Principles, Irwin, The McGrae-Hill Companies," ed: INC, 1997.
    [40] J. F. Wager, "Transparent electronics," Science, vol. 300, pp. 1245-1246, 2003.
    [41] E. Fortunato, P. Barquinha, and R. Martins, "Oxide Semiconductor Thin‐Film Transistors: A Review of Recent Advances," Advanced materials, vol. 24, pp. 2945-2986, 2012.
    [42] Y. Setsuhara, K. Cho, K. Takenaka, M. Shiratani, M. Sekine, and M. Hori, "Plasma processing of soft materials for development of flexible devices," Thin Solid Films, vol. 519, pp. 6721-6726, 2011.
    [43] G. Haacke, "New figure of merit for transparent conductors," Journal of Applied Physics, vol. 47, pp. 4086-4089, 2008.
    [44] J. K. Kim, J. M. Lee, J. W. Lim, J. H. Kim, and S. J. Yun, "High-performance transparent conducting Ga-doped ZnO Films deposited by RF magnetron sputter deposition," Japanese Journal of Applied Physics, vol. 49, p. 04DP09, 2010.
    [45] C.-Y. Hsu and C.-H. Tsang, "Effects of ZnO buffer layer on the optoelectronic performances of GZO films," Solar Energy Materials and Solar Cells, vol. 92, pp. 530-536, 2008.
    [46] B. D. Ahn, Y. G. Ko, S. H. Oh, J.-H. Song, and H. J. Kim, "Effect of oxygen pressure of SiO< sub> x</sub> buffer layer on the electrical properties of GZO film deposited on PET substrate," Thin Solid Films, vol. 517, pp. 6414-6417, 2009.
    [47] J.-i. Nomoto, J.-i. Oda, T. Miyata, and T. Minami, "Effect of inserting a buffer layer on the characteristics of transparent conducting impurity-doped ZnO thin films prepared by dc magnetron sputtering," Thin Solid Films, vol. 519, pp. 1587-1593, 2010.
    [48] O. Lupan, T. Pauporté, and B. Viana, "Low-temperature growth of ZnO nanowire arrays on p-Silicon (111) for visible-light-emitting diode fabrication," The Journal of Physical Chemistry C, vol. 114, pp. 14781-14785, 2010.
    [49] Y. C. Cho, S.-Y. Cha, J. M. Shin, J. H. Park, S. E. Park, C. R. Cho, et al., "The conversion of wettability in transparent conducting Al-doped ZnO thin film," Solid State Communications, vol. 149, pp. 609-611, 2009.
    [50] J. Yang, J. K. Park, S. Kim, W. Choi, S. Lee, and H. Kim, "Atomic‐layer‐deposited ZnO thin‐film transistors with various gate dielectrics," physica status solidi (a), vol. 209, pp. 2087-2090, 2012.
    [51] T. T. Trinh, N. H. Tu, H. H. Le, K. Y. Ryu, K. B. Le, K. Pillai, et al., "Improving the ethanol sensing of ZnO Nano-particle thin films—The correlation between the grain size and the sensing mechanism," Sensors and Actuators B: Chemical, vol. 152, pp. 73-81, 2011.
    [52] D. Zhang and H. Ma, "Scattering mechanisms of charge carriers in transparent conducting oxide films," Applied Physics A, vol. 62, pp. 487-492, 1996.
    [53] P. S. Kireev, Semiconductor physics: Mir, 1978.
    [54] B. Du Ahn, S. H. Oh, H. J. Kim, M. H. Jung, and Y. G. Ko, "Low temperature conduction and scattering behavior of Ga-doped ZnO," Applied Physics Letters, vol. 91, p. 252109, 2007.
    [55] M. Chen, Z. Pei, C. Sun, L. Wen, and X. Wang, "Surface characterization of transparent conductive oxide Al-doped ZnO films," Journal of crystal growth, vol. 220, pp. 254-262, 2000.
    [56] S. Jeong, Y. G. Ha, J. Moon, A. Facchetti, and T. J. Marks, "Role of Gallium Doping in Dramatically Lowering Amorphous‐Oxide Processing Temperatures for Solution‐Derived Indium Zinc Oxide Thin‐Film Transistors," Advanced Materials, vol. 22, pp. 1346-1350, 2010.
    [57] B.-G. Kim, J.-Y. Kim, S.-J. Lee, J.-H. Park, D.-G. Lim, and M.-G. Park, "Structural, electrical and optical properties of Ga-doped ZnO films on PET substrate," Applied Surface Science, vol. 257, pp. 1063-1067, 2010.
    [58] J. Davenas, S. Besbes, A. Abderrahmen, N. Jaffrezic, and H. Ben Ouada, "Surface characterisation and functionalisation of indium tin oxide anodes for improvement of charge injection in organic light emitting diodes," Thin Solid Films, vol. 516, pp. 1341-1344, 2008.
    [59] A. Rudawska and E. Jacniacka, "Analysis for determining surface free energy uncertainty by the Owen–Wendt method," International Journal of Adhesion and Adhesives, vol. 29, pp. 451-457, 2009.
    [60] H. J. Kim, J. W. Kim, H. H. Lee, T.-M. Kim, J. Jang, and J.-J. Kim, "Grazing incidence small-angle x-ray scattering analysis of initial growth of planar organic molecules affected by substrate surface energy," The Journal of Physical Chemistry Letters, vol. 2, pp. 1710-1714, 2011.
    [61] J. H. Cho, D. H. Lee, J. A. Lim, K. Cho, J. H. Je, and J. M. Yi, "Evaluation of the adhesion properties of inorganic materials with high surface energies," Langmuir, vol. 20, pp. 10174-10178, 2004.
    [62] K. H. Ji, J.-I. Kim, Y.-G. Mo, J. H. Jeong, S. Yang, C.-S. Hwang, et al., "Comparative Study on Light-Induced Bias Stress Instability of IGZO Transistors With and Gate Dielectrics," Electron Device Letters, IEEE, vol. 31, pp. 1404-1406, 2010.
    [63] H. Slade, M. Shur, S. Deane, and M. Hack, "Below threshold conduction in a‐Si: H thin film transistors with and without a silicon nitride passivating layer," Applied physics letters, vol. 69, pp. 2560-2562, 1996.
    [64] J. Jeong, G. J. Lee, J. Kim, S. M. Jeong, and J.-H. Kim, "Analysis of temperature-dependent electrical characteristics in amorphous In-Ga-Zn-O thin-film transistors using gated-four-probe measurements," Journal of Applied Physics, vol. 114, p. 094502, 2013.
    [65] J. Kyeong Jeong, H. Won Yang, J. H. Jeong, Y.-G. Mo, and H. D. Kim, "Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors," Applied Physics Letters, vol. 93, pp. 123508-123508-3, 2008.
    [66] S.-S. Park, W.-H. Choi, D.-H. Nam, K.-i. Chai, J.-K. Jeong, H.-D. Lee, et al., "Performance and stability characterization of bottom gated amorphous indium gallium zinc oxide thin film transistors grown by RF and DC sputtering," Japanese Journal of Applied Physics, vol. 48, p. 04C134, 2009.
    [67] Y.-S. Lee, S.-K. Fan, C.-W. Chen, T.-W. Yen, and H.-C. Lin, "Temperature instability of amorphous In-Ga-Zn-O thin film transistors," in Advanced Infocomm Technology (ICAIT), 2013 6th International Conference on, 2013, pp. 153-154.
    [68] M. Kimura, T. Nakanishi, K. Nomura, T. Kamiya, and H. Hosono, "Trap densities in amorphous-InGaZnO4 thin-film transistors," Applied Physics Letters, vol. 92, p. 133512, 2008.

    無法下載圖示 校內:2019-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE