| 研究生: |
李孟哲 Lee, Meng-Je |
|---|---|
| 論文名稱: |
可變區塊大小移動預估之三步搜尋法
超大型積體電路架構 A VLSI Architecture for Three-Step Search with Variable Block-Size Motion Estimation |
| 指導教授: |
賴源泰
Lai, Yen-Tai |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 移動估測 、三步搜尋法 、超大型積體電路設計 |
| 外文關鍵詞: | Motion Estimation, Three-Step Search, VLSI design |
| 相關次數: | 點閱:88 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
H.264/AVC在視訊多媒體方面扮演了很重要的角色,不管是在壓縮率和影像品質都明顯優於以往的視訊標準。而在H.264中,移動估測(motion estimation, ME)更成為了視訊編碼的核心,其中採用了多福參考畫面(multiple reference frames)、可變區塊大小的移動估測(variable block size motion estimation)、移動向量(motion vector)可搜尋至四分之ㄧ像素精確度(quarter pixel resolution) 等,都是為了要提高影像的品質和更精準的預測,但這也使得了移動估測的運算量與複雜度大幅的提升。
此篇論文將提出可變區塊大小移動估測之超大型積體電路架構應用於三步搜尋法。移動估測將以管線化設計並規劃成平行處理方式來增加資料產出量,在處理單元方面則利用計算小的區塊大小來組合出大的區塊的方式來得到41種區塊的移動向量。
最後使用verilog硬體描述語言來實現其電路架構,再透過Synopsys的Design Compiler與TSMC 0.18㎛製程作電路合成,實驗結果顯示,本論文所提出的三步搜尋法移動估測架構,比起以往的三步搜尋法可得到更多區塊大小的移動向量,比起以往的可變區塊大小硬體架構雖然面積並沒有減少,但確實降低了運算複雜度。
H.264/AVC plays an important role in the video compression standard, it is better than previous video standards in the compression ration and the image quality. Motion estimation is one of the core designs of H.264 video coding, it basically includes the motion vector at quarter pixel resolution with variable block sizes and multiple reference frames, it is mainly to improve the image quality and provides more accurate predictions, however, because of these features, the computation load and complexity of motion estimation increase significantly.
This thesis proposes VLSI architecture for variable block size motion estimation which applies to the three step search algorithm. Our proposed architecture use pipelined design and employs parallel architecture to improve the throughput, in the processing elements, it allows SADs for larger block sizes to be computed by using the results derived for 4x4 blocks.
Finally, we implement the RTL code by Verilog hardware description Language, and synthesize the digital circuit by using Design Compiler of Synopsys with the TSMC 0.18㎛CMOS technology. Experimental results show that, Compared with the conventional three step search architectures, our proposed architecture can obtain more motion vectors for different block size, and compared to the previous variable block size architectures, our proposed architecture can reduce the computational complexity.
REFERENCES
[1] “Draft ITU-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC),” Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-G050, 2003.
[2] Youn-Long Steve Lin, Chao-Yang Kao, Hung-Chih Kuo, Jian-Wen Chen, “VLSI Design for Video Coding- H.264-AVC Encoding from Standard Specification to Chip” Springer, 2010.
[3] C.P Fan, “Fast 2-Dimensional 4x4 Forward Integer Transform Implementation for H.264/AVC,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 3, pp. 174-177, Mar. 2006.
[4] Xiang Li, Chopra. R. and Hsu K, W. “Novel VLSI architecture of motion estimation for H.264 standard,” in Proc. of IEEE Int. Conf. SOC, pp. 117-118. Sept. 2005.
[5] Shuo Yao, Hai-Jun Guo, Lu Yu, and Ke Zhang, “A hardware implementation for full search motion estimation of AVS with search center prediction, “ IEEE Trans. Consumer Electronics, vol.52, no. 4, pp: 1356-1361, Nov. 2006.
[6] Draft IUT-T Recommendation and Final Draft International Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 144496-10 AVC),” Joint Video Team of ISO/IEC and ITU-T, March 2003.
[7] Zhongli He, Ming L. Liou, Philip. C. H. Chan, R. Li, “An Efficient VLSI Architecture for New Three-Step Search Algorithm,” IEEE Trans. On circuits and systems for video technology, vol. 2, pp. 1228-1231, Aug 1995.
[8] J. Kim and T. Park, “A Novel VLSI Architecture for Full-Search Variable Block-Size Motion Estimation, “ IEEE trans. on Consumer Electronics, vol. 55, pp. 728-733, May 2009.
[9] S. K. Kwon, A. Tamhankar, and K. R, Rao, “Overview of H.264/MPEG-4 part 10,” Journal of Visual Communication and Image Representation, vol. 17, pp. 186-216, April 2006.
[10] R. Li, B. Zeng, and M. L. Liou, “A New Three-Step search Algorithm for Block Motion Estimation , “ IEEE Trans. on Circuits Systems and Video Technology, vol. 4, pp. 438-442, Aug. 1994.
[11] Z. Liu, Y. Huang, Y. Song, S. Goto, T. Ikenaga, “Hardware-Efficient Propagate Partial SAD Architecture for Variable Block Size Motion Estimation in H.264/AVC,” Proceedings of the 17th ACM Great Lakes symposium on VLSI, pp. 160-163, Mar. 2007.
[12] K, M. Yang, M. T. Sun, and L. Wu, “A Family of VLSI Designs for the Motion Compensation Block-Matching Algorithm,” IEEE Trans. on Circuits and Systems, vol. 36, no. 10, pp. 1317-1325, Oct. 1989.
[13] S. Y. Yap and J. V. McCanny,”A VLSI Architecture for Variable Block Size Video Motion Estimation,” IEEE Trans. on Circuits and Systems II: Express Briefs, vol. 51, pp 384-389, July 2004.
[14] T. C. Wang, Y. W. Huang, H. C. Fang, and L. G. Chen, “Parallel 4x4 2D Transform and Inverse Transform Architecture for MPEG-4 AVC/H.264,“ Proceeding of the International Symposium on Circuits Systems, vol. 2, pp. 800-803, May 2003.
[15] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Trans. Circuits Syst. Video Technol., vol. 13, no.7, pp. 560–576, Jul. 2003.
校內:2021-12-31公開