| 研究生: |
張智揚 Chang, Chih-Yang |
|---|---|
| 論文名稱: |
氧化鋁-水奈米流體進口溫度及隨溫度變化熱物性質對圓管內層流對流熱傳遞性能之效應 Laminar Convective Heat Transfer Performance of Alumina-Water Nanofluid Flow in a Circular Tube: Effects of Inlet Temperature and Temperature-Dependent Properties |
| 指導教授: |
何清政
Ho, Ching-Jeng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 奈米流體 、可變物性 、層流強制對流 |
| 外文關鍵詞: | Nanofluid, Variable property, Laminar forced convection |
| 相關次數: | 點閱:105 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用數值模擬與實驗並行方式,在數值模擬部分藉由改變進口溫度、流量和加熱功率且固定加熱段長度lh+/(di+Pef,0)=0.1所定義的無因次進口溫度參數範圍in=1.04~16.51並針對其對流場、熱傳遞及熵生成量的影響進行研究,結果顯示當in=1.04時,在考慮可變物性與固定物性下結果的比值,壓降與熵生成量有最小值;對流熱傳係數有最大值。實驗上針對氧化鋁奈米流體進行粒徑、黏度和熱傳導係數上的確認,所測得在水中懸浮粒徑為109.6 nm,並將其應用在等熱通量加熱水平圓管內的層流強制對流熱傳實驗;所用的圓管分為兩種:外徑分別為4 mm與6.3 mm,內徑分別為3.4 mm與6 mm,無因次管壁厚度tw=0.17和0.05,實驗相關條件參數:氧化鋁-水奈米流體濃度為ω_np^ =2~10 wt.%;進口溫度Tin = 25℃和50℃;Ref,0 =186~2095;外管壁等效熱通量q_(eff,o)^'=1066~7362 W/m2,實驗結果在進口溫度為50℃時,氧化鋁-水奈米流體與水的平均對流熱傳效益比值最大達1.18。本文研究中,局部壁溫與局部對流熱傳係數在數值模擬與實驗比對大致相符。
關鍵字: 奈米流體、可變物性、層流強制對流
In the present study, the laminar forced convection heat transfer characteristics of a horizontal tube partially heated with constant heat flux have been investigated experimentally and numerically. In numerical simulation, dimensionless inlet temperature parameter, θ_in^ , defined by inlet temperature, flow rate and heating power and dimensionless heating length lh+/(di+Pef,0) was fixed to 0.1, ranges from 1.04 to 16.51.
Under the consideration of the ratio of variable thermal physical property and constant thermal physical property, convection heat transfer coefficient and minimum value in the pressure drop and entropy generation. In thermal physical properties verification, Al2O3-water nanofluid was conducted for particle size test, about 109.6 nm in suspension fluid, viscosity and thermal conductivity. On the other hand, experiments have been performed using two copper tube of inner and outer radii, one is 3.4 mm and 4 mm, the other is 6 mm and 6.3 mm, for the relevant parameters in the following ranges: the mass fraction of nanoparticles, np = 2 ~ 10 wt.%; the Reynolds number, Ref,0 = 186 ~ 2095; the inlet temperature, Tin = 25℃ and 50℃, and the imposed heat flux, qo" = 1069 ~ 7362W/m2 . The laminar cooling effectiveness of the nanofluid flow can be enhanced up to 1.18 at inlet temperature 50℃. The experimental results clearly exhibit a good agreement with the corresponding numerical simulations.
Key words: nanofluid, variable property, laminar forced convection.
Anoop, K. B., Sundararajan, T., and Das, S. K., Effect of particle size on the convective heat transfer in nanofluid in the developing region, International Journal of Heat and Mass Transfer, 52(9-10), 2189-2195, 2009
Bianco, V., et al., Numerical investigation of nanofluids forced convection in circular tubes. Applied Thermal Engineering, 29(17): p. 3632-3642, 2009
Choi, S.U.S. and J. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab., IL (United States), 1995
Chandrasekar, M., Suresh, S., and Chandra Bose, A., Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid, Experimental Thermal and Fluid Science, 34(2), 210-216, 2010
Chandrasekar, M., S. Suresh, and T. Senthilkumar, Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids, A review. Renewable and Sustainable Energy Reviews, 16(6): p. 3917-3938, 2012
Corcione, M., Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids, Energy Conversion and Management, 52(1), 789-793, 2011.
Das, S. K., Putra, N., Thiesen, P., and Roetzel, W., Temperature dependence of thermal conductivity enhancement for nanofluids, Journal of Heat Transfer, 125(4), 567, 2003
Del Giudice, S., C. Nonino, and S. Savino, Effects of viscous dissipation and temperature dependent viscosity in thermally and simultaneously developing laminar flows in microchannels. International Journal of Heat and Fluid Flow, 28(1): p. 15-27, 2007
Eastman, J.A., et al., Thermal transport in nanofluids 1. Annu. Rev. Mater. Res., 34: p. 219-246, 2004
Ferrouillat, S., Bontemps, A., Ribeiro, J.P., Gruss, J.A., and Soriano, O., Hydraulic and heat transfer study of SiO2/water nanofluids in horizontal tubes with imposed wall temperature boundary conditions, International Journal of Heat and Fluid Flow, 32(2), 424-439, 2011
Gulhane, N.P. and S.P. Mahulikar, Numerical study of compressible convective heat transfer with variations in all fluid properties. International Journal of Thermal Sciences, 49(5): p. 786-796, 2010
Godson, L., Lal, D. M., and Wongwises, S., Measurement of thermo physical properties of metallic nanofluids for high temperature applications, Nanoscale and Microscale Thermophysical Engineering, 14(3), 152-173, 2010
Hamilton, R. and O. Crosser, Thermal conductivity of heterogeneous two-component systems. Industrial & Engineering chemistry fundamentals, 1(3): p. 187-191, 1962
Hojjat, M., Etemad, S. G., Bagheri, R., and Thibault, J., Laminar convective heat transfer of non-Newtonian nanofluids with constant wall temperature, Heat and Mass Transfer, 47(2), 203-209, 2010
Hwang, K., Jang, S., and Choi, S., Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime, International Journal of Heat and Mass Transfer, 52(1-2), 193-199, 2009
Khanafer, K. and K. Vafai, A critical synthesis of thermophysical characteristics of nanofluids. International Journal of Heat and Mass Transfer, 54(19-20): p. 4410-4428, 2011
Keblinski, P., et al., Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). International Journal of Heat and Mass Transfer, 45(4): p. 855-863, 2002
Koo, J. and C. Kleinstreuer, A new thermal conductivity model for nanofluids. Journal of Nanoparticle Research, 6(6): p. 577-588, 2004
Kakac, S., Shah, R.K., and Aung, W., Handbook of Single-Phase Convective Heat Transfer, John Wiley & Sons, New York, 2010
Li, C. H., and Peterson, G. P., Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids). Journal of Applied Physics, 99(8), 084314, 2006
Morris, J.E., Nanopackaging: Nanotechnologies and electronics packaging, IEEE, 2007
Maxwell , J.C., A treatise on electricity and magnetism. Vol. 1. : Clarendon Press., 1873
Murshed, S., Leong, K., and Yang, C., Investigations of thermal conductivity and viscosity of nanofluids. International Journal of Thermal Sciences, 47(5), 560-568, 2008
Özerinç, S., A. Yazıcıoğlu, and S. Kakaç, Numerical analysis of laminar forced convection with temperature-dependent thermal conductivity of nanofluids and thermal dispersion. International Journal of Thermal Sciences, 2011.
Popiel, C. O., and Wojtkowiak, J., Simple Formulas for Thermophysical Properties of Liquid Water for Heat Transfer Calculations (from 0°C to 150°C). Heat Transfer Engineering, 19(3), 87-101, 1998
Rosa, P., T. Karayiannis, and M. Collins, Single-phase heat transfer in microchannels: The importance of scaling effects. Applied Thermal Engineering, 29(17): p. 3447-3468, 2009
Rea, U., McKrell, T., Hu, L.-w., and Buongiorno, J., Laminar convective heat transfer and viscous pressure loss of alumina–water and zirconia–water nanofluids. International Journal of Heat and Mass Transfer, 52(7-8), 2042-2048, 2009
Shin, S., et al., Numerical study of laminar heat transfer with temperature dependent fluid viscosity in a 2: 1 rectangular duct. International Journal of Heat and Mass Transfer, 36(18): p. 4365-4373, 1993
Tahir, S. and M. Mital, Numerical investigation of laminar nanofluid developing flow and heat transfer in a circular channel. Applied Thermal Engineering, 39: p. 8-14, 2012
Tesfai, W., et al., Effect of temperature on turbulent and laminar flow efficacy analysis of nanofluids. Journal of Applied Physics, 111(6): p. 064319-064319-5, 2012
Vajjha, R.S. and D.K. Das, A review and analysis on influence of temperature and concentration of nanofluids on thermophysical properties, heat transfer and pumping power. International Journal of Heat and Mass Transfer, 2012
Yu, W., H. Xie, and L.H. Liu, A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials, (711): p. 128, 2011
Zeinali Heris, S., Nasr Esfahany, M., and Etemad, S. G., Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube. International Journal of Heat and Fluid Flow, 28(2), 203-210, 2007
Zhang, X., Gu, H., and Fujii, M., Effective thermal conductivity and thermal diffusivity of nanofluids containing spherical and cylindrical nanoparticles. Experimental Thermal and Fluid Science, 31(6), 593-599, 2007
Zimmermann, S., et al., Aquasar: A hot water cooled data center with direct energy reuse. Energy, 2012
陳苗汶, 方形容器內奈米流體之自然對流熱傳模式與數值模擬研究, 國立成功大學機械工程學系碩博士班學位論文論文, 2007
鄭偉成, 毫米流道熱沉孔內奈米微粒/相變化微膠囊懸浮液之強制對流特性研,國立成功大學機械工程學系碩博士班學位論文, 2010
林永巨, 氧化鋁-水奈米流體於水平圓管中之紊流熱傳特性與壓降實驗研究. 國立成功大學機械工程學系碩博士班學位論文, 2011.