| 研究生: |
盧品瑜 Lu, Pin-Yu |
|---|---|
| 論文名稱: |
我國電力部門深度減碳技術組合評估 Assessment of Deep Decarbonization Portfolios for Taiwan’s Electricity Sector |
| 指導教授: |
黃韻勳
Huang, Yun-Hsun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 淨零排放 、深度減碳 、電力供給規劃 、再生能源 、氫能 |
| 外文關鍵詞: | Net-Zero Emissions, Deep Decarbonization, Electricity Supply Planning, Renewable Energy, Hydrogen Energy |
| 相關次數: | 點閱:126 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第 26 屆締約國大會通過《格拉斯哥氣候協議》,此協議提及逐步減少化石燃料使用,且逐年檢視各國於減碳之成效,期望於 2050 年達到淨零碳排放,各國也陸續提出淨零排放期程與目標。因應國際淨零趨勢,我國亦於2022 年 4 月發布《台灣 2050 淨零排放路徑及策略總說明》,並規劃大幅提升再生能源裝置容量,以減少電力部門排碳量,但欠缺評估不同深度減碳目標下對於各類減碳技術組合之影響。基此,本研究以小時別資料建構電力供給規劃模型,以模擬再生能源間歇性所產生之發電量波動性,並納入氫能、碳捕獲與封存等前瞻能源技術及儲能技術,設定基準情境及低、中、高三種減碳情境,以探討我國於 2050 年各情境之減碳技術組合變化,並評估對於電力結構之影響。
模擬結果顯示,基準情境至 2050 年的總發電量為 4,067 億度;其中,離岸風力、太陽光電及燃氣發電為主要發電來源。基準情境下的二氧化碳排放量可降低至 6,852 萬公噸,碳排放係數則降為 0.168 公斤 CO2/度。在各減碳情境下的再生能源發電占比介於 59.26%~65.77%間,將由現行以化石燃料為主的發電結構轉變為以再生能源為主的電力結構。在小時別模擬結果方面,冬季白天以離岸風電加上太陽光電幾近可滿足所有電力需求,但夏季白天離岸風電加上太陽光電並不足以滿足電力需求。在低減碳情境下,會搭配燃氣發電與燃煤發電以滿足電力需求。但在中減碳與高減碳情境下,由於排放量限制逐漸趨嚴,將顯著增加燃氣發電搭配碳捕獲與封存之發電量。
此外,模擬結果亦顯示氫能在深度減碳的情境下可扮演重要角色,為未來邁向淨零碳排之重要技術之一,建議可積極投入氫能發電之技術開發與示範應用,並完善氫能運儲基礎設施,以提升產業投入之意願,加速我國減碳之進程。
In response to the global net-zero emissions target, Taiwan released "Taiwan's 2050 Net-Zero Emission Pathway and Strategy" in April 2022, which includes significantly increasing the capacity of renewable energy in order to reduce carbon emissions in the electricity sector. By incorporating emerging energy technologies, such as hydrogen energy, carbon capture and storage, as well as energy storage technologies, this study constructed an electricity supply planning model based on hourly data to simulate volatility in power generation caused by the intermittent of renewable energy sources. A variety of scenario simulations were conducted to explore changes in the technology mix in various scenarios for 2050, and impacts on the power structure were also evaluated.
The current power generation structure is dominated by fossil fuels and will be transformed into a power structure dominated by renewable energy. From the baseline scenario, our simulation results showed that the total electricity production will be 406.7 billion kWh in 2050, with the major sources of power being offshore wind energy, solar photovoltaic, and LNG-fired technology. In each carbon reduction scenario, the proportion of renewable energy power generation ranged from 59.26% to 65.77%.
Simulation results also revealed that hydrogen energy, which is one of the key technologies to moving to net-zero carbon emissions in the future, will play an important role in deep carbon reductions. Actively investing in the technological development and demonstration application of hydrogen energy power generation as well as improving transportation and storage infrastructure of hydrogen energy are strongly recommended by which to increase the willingness of industrial investment and accelerate the process of carbon reduction in Taiwan.
中文部分:
1.王京明、林祐民 (2017),「非核家園與政府再生能源推廣目標下之碳稅與最適電源組合分析」,臺灣能源期刊,4 (2),199-222。
2.台灣綜合研究院(2019),「未來電力供需分析與規劃(2/2)」,經濟部能源局委辦計畫。
3.李信、楊逸亞、吳榮華、黃韻勳 (2020),「我國能源轉型政策對電力供給規劃之影響」,鑛冶:中國鑛冶工程學會會刊, 64(3),9-21。
4.郭瑾瑋、周裕豐、洪明龍、劉子衙 (2015),「應用臺灣TIMES模型進行我國長期電力供需規劃」,臺灣能源期刊,2 (4),363-382。
5.梁啟源、鄭睿合、郭博堯、郭箴誠 (2015),「我國最適電力配比之研究」,臺灣能源期刊,2 (4),481-496。
6.張耀仁、蕭子訓、胡瑋元、張嘉諳(2017),「非核家園與再生能源政策對我國電力結構之影響」,臺灣能源期刊,4 (2),131-144。
7.陳中舜、張耀仁、卓金和 (2019),「因應我國再生能源政策之儲能系統需求評估」,臺灣能源期刊,6 (4),313-334。
8.國家發展委員會、行政院環境保護署、經濟部、科技部、交通部、內政部、行政院農業委員會、金融監督管理委員會(2022),臺灣 2050 淨零排放路徑及策略總說明。
9.黃韻勳 (2007) ,「考量發電風險之電力供給規劃研究—再生能源範例分析」,博士論文,國立成功大學資源工程研究所。
10.經濟部能源局(2021),中華民國110年能源統計手冊。
11.經濟部能源局(2021),中華民國110年能源統計月報。
12.韓佳佑、陳治均(2019),「生質燃料與煤炭混燒對我國電力結構影響研究」,臺灣能源期刊,6 (2),165-183。
英文部分:
1.Amorim, F., Pina, A., Gerbelová, H., da Silva, P.P., Vasconcelos, J., Martins,V. (2014). Electricity decarbonisation pathways for 2050 in Portugal: A TIMES (The Integrated MARKAL-EFOM System) based approach in closed versus open systems modelling. Energy, 69,104-112.
2.Brown, T., Schäfer, M., Greiner, M. (2019). Sectoral Interactions as Carbon Dioxide Emissions Approach Zero in a Highly-Renewable European Energy System. Energies, 12, 1032.
3.Bartholdsen, H.K., Eidens, A., Löffler, K., Seehaus, F., Wejda, F., Burandt, T., Oei, P. Y., Kemfert, C., von Hirschhausen, C. (2019). Pathways for Germany’s Low-Carbon Energy Transformation Towards 2050. Energies, 12, 2988.
4.Cheng, R., Xu, Z., Liu, P., Wang, Z., Li, Z., Jones, I. (2015). A multi-region optimization planning model for China’s power sector. Applied Energy,137,413-426.
5.Golombek, R., Lind, A., Ringkjøb, H.-K., Seljom, P. (2022). The role of transmission and energy storage in European decarbonization towards 2050. Energy, 239, 122159.
6.Ghorbani, N., Aghahosseini, A., Breyer, C. (2020). Assessment of a cost-optimal power system fully based on renewable energy for Iran by 2050–Achieving zero greenhouse gas emissions and overcoming the water crisis. Renewable Energy, 146, 125-148.
7.Jägemann, C., Fürsch, M., Hagspiel, S., Nagl, S. (2013). Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways. Energy Economics, 40, 622-636.
8.Lawrenz, L., Xiong, B., Lorenz, L., Krumm, A., Hosenfeld, H., Burandt, T., Löffler, K., Oei, P.-Y., & Von Hirschhausen, C. (2018). Exploring Energy Pathways for the Low-Carbon Transformation in India—A Model-Based Analysis. Energies,11, 3001.
9.Lugovoy, O., Gao, S., Gao, J., Jiang, K. (2021). Feasibility study of China's electric power sector transition to zero emissions by 2050. Energy Economics, 96, 105176.
10.Mirjat, N.H., Uqaili M.A., Harijan, K., Walasai, G.D., Mondal, M.A.H., Sahin, H. (2018). Long-term electricity demand forecast and supply side scenarios for Pakistan (2015–2050): A LEAP model application for policy analysis. Energy, 165, 512-526.
11.Maruf,M. N. I. (2021). Open model-based analysis of a 100% renewable and sector-coupled energy system–The case of Germany in 2050. Applied Energy, 288, 116618.
12.Plessmann, G. and Blechinger, P. (2017). How to meet EU GHG emission reduction targets? A model based decarbonization pathway for Europe's electricity supply system until 2050. Energy Strategy Reviews, 15,19-32.
13.Pye, S.,Li P.H., Keppo, I., O’Gallachoir, B. (2019). Technology interdependency in the United Kingdom's low carbon energy transition. Energy Strategy Reviews, 224,314-330.
14.Solomon, A.A., Bogdanov, D., and Breyer, C. (2018). Solar driven net zero emission electricity supply with negligible carbon cost: Israel as a case study for Sun Belt countries. Energy, 155,87-104.
15.Sarmiento, L., Burandt, T., Löffler, K., Oei, P.-Y. (2019) .Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD). Energies, 12, 3270.
16.Shirizadeh, B., Quirion, P. (2021). Low-carbon options for the French power sector: What role for renewables, nuclear energy and carbon capture and storage? Energy Economics, 95, 105004.
17.Shirizadeh, B., Quirion, P. (2022). Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France. Applied Energy, 305, 117951.
18.Toledo D., Rodriguez-Martinez A., Cerezo J., Herandez G., Romero R.J., Lechon Y., (2021). Mexican Power System to 2050: Sustainability Assessment with an Energy Model. Chemical Engineering Transactions, 86, 481-486.
19.Vaillancourt, K., Bahn, O., Frenette, E. abd Sigvaldason, O. (2017). Exploring deep decarbonization pathways to 2050 for Canada using an optimization energy model framework. Applied Energy, 195,774-785.