簡易檢索 / 詳目顯示

研究生: 謝宏潁
Xie, Hong-Ying
論文名稱: Ba₅Nb₄O₁₅陶瓷材料與Al-Cu-(Ni)內電極共燒之研究
Investigation on Ba₅Nb₄O₁₅ ceramic material co-fired with Al-Cu-(Ni) inner electrode
指導教授: 李文熙
Lee, Wen-Hsi
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 99
中文關鍵詞: 低溫共燒陶瓷卑金屬電極銅鎳鋁合金銅鋁合金
外文關鍵詞: LTCC, base-metal electrodes, copper-nickel-aluminum alloys, copper-aluminum alloys
相關次數: 點閱:130下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究20wt%Cu/80wt%Al、30wt%Cu/70wt%Al、40wt%Cu/60wt%Al三種不同比例之銅鋁電極膏與20wt%CuNi/80wt%Al、40wt%CuNi/60wt%Al兩種比例之銅鎳鋁電極膏應用於LTCC內電極當中,而元件為5層結構,陶瓷材料為鈮酸鋇其K值為40,再透過空氣燒結研究內電極結構的變化。本論文主要分為以下三個部份去作探討。
    第一部分為燒結溫度設定,比較直接燒結與二段燒結之好壞,決定使用二段燒結之後再透過DTA判斷合金的生成溫度,最後,使用TMA來決定陶瓷燒結緻密的溫度。
    第二部分的研究重點在於對燒結後的LTCC陶瓷內電極進行微結構分析,主要觀察連續性、氧化和擴散這三個部分。連續性是指內電極的無斷裂和連接情況。通過觀察內電極的微結構,我們可以確定何種升溫速率下內電極的連續性最佳。其次,觀察氧化情況。在燒結過程中,內電極暴露在高溫環境下,容易氧化。氧化會導致內電極的電性能下降,甚至斷路。通過觀察內電極的氧化程度,我們可以判斷何種升溫速率下內電極的氧化程度較低,以確保較好的電性能。最後,觀察擴散是為了內電極在燒結過程中,電極材料有無分布在陶瓷層當中。
    第三部分為電性分析,分析了並聯電容(Cp)、並聯電阻(Rp)、K(介電係數)、Q(品質因數),在何種燒結情況下電性會達到最佳。

    This paper investigates the application of different copper-aluminum and copper-nickel-aluminum electrode pastes for LTCC internal electrodes. Three ratios, 20wt%Cu/80wt%Al, 30wt%Cu/70wt%Al, and 40wt%Cu/60wt%Al, along with two ratios of 20wt%CuNi/80wt%Al and 40wt%CuNi/60wt%Al, are studied. The 5-layer structure comprises barium niobium with a K-value of 40, and structural changes of internal electrodes are explored through air sintering. Divided into three parts, the first evaluates sintering temperature settings, opting for two-stage sintering based on DTA results and TMA to determine ceramic sintering temperature. The second part analyzes microstructures focusing on continuity, oxidation, and diffusion. Optimal heating rates are determined for continuity, while observing oxidation effects on electrical performance. Diffusion phenomena confirm electrode material distribution during sintering. The third part focuses on electrical analysis, optimizing parallel capacitance (Cp), parallel resistance (Rp), K (dielectric coefficient), and Q (quality factor) under various firing conditions.

    摘要 I EXTENDED ABSTRACT II 誌謝 XVI 目錄 XVII 表目錄 XX 圖目錄 XXII 第一章 緒論 1 1-1 前言 1 1-2 動機 2 第二章 文獻回顧 3 2-1 鋁合金 3 2-1-1 鎳鋁合金 4 2-1-2 銅鋁合金 6 2-1-3 銅鎳鋁合金 9 2-2 低溫共燒陶瓷 13 2-2-1 簡介 13 2-2-2 鈮酸鋇(Ba5Nb4O15) 14 2-3 燒結理論 18 2-3-1 固相燒結 18 2-3-2 液相燒結 18 2-3-3 二段燒結 23 第三章 實驗過程 25 3-1 樣品製備 26 3-1-1 球磨 26 3-1-2 薄帶成型 26 3-1-3 內電極印刷 28 3-1-4 堆疊與水壓 28 3-1-5 黏結劑燒除 29 3-1-6 燒結 30 3-1-7 倒角與浸漬 31 3-2 分析技術 32 3-2-1 Scanning electron microscopy (SEM) 32 3-2-2 X-ray diffraction (XRD) 33 3-2-3 熱重分析儀 (TG/DTA) 35 3-2-4 Thermal Mechanical Analyzer (TMA) 37 3-2-5 LCR meter 38 第四章 結果與討論 40 4-1 燒結設定 41 4-1-1 緻密與收縮 41 4-1-2 直接燒結 56 4-1-3 合金形成 57 4-2 微結構分析 75 4-2-1 連續性 75 4-2-2 氧化 82 4-2-3 擴散 84 4-3 電性分析 91 第五章 結論與未來展望 96 5-1 結論 96 5-2 未來展望 97 參考文獻 98

    [1] Z. Jeffries, "Two decades of precipitation hardening alloys," Metals and Alloys, vol. 1, no. 1, pp. 3-5, 1929.
    [2] M. E. Fine, "Precipitation hardening of aluminum alloys," Metallurgical Transactions A, vol. 6, pp. 625-630, 1975.
    [3] A. K. Srivastava, R. K. Singh, S. Kumar, S. P. Dwivedi, N. K. Maurya, and S. Mishra, "Development of duralumin alloy and its microstructural characterization by using grain refiner," Materials Today: Proceedings, vol. 25, pp. 877-880, 2020.
    [4] Y. Zhang, N. Ma, Y. Le, S. Li, and H. Wang, "Mechanical properties and damping capacity after grain refinement in A356 alloy," Materials Letters, vol. 59, no. 17, pp. 2174-2177, 2005.
    [5] A. K. Srivastava, A. R. Dixit, and S. Tiwari, "A review on the intensification of metal matrix composites and its nonconventional machining," Science and Engineering of composite materials, vol. 25, no. 2, pp. 213-228, 2018.
    [6] C. Jia, K. Ishida, and T. Nishizawa, "Partition of alloying elements between γ (A1), γ′(L12), and β (B2) phases in Ni-Al base systems," Metallurgical and Materials Transactions A, vol. 25, pp. 473-485, 1994.
    [7] A. Školáková, J. Pinc, and P. Novak, "The preferential formation of Ni2Al3, Fe2Al5, and Ti2Al5 phases in aluminide systems," Materials Chemistry and Physics, vol. 280, p. 125859, 2022.
    [8] H.-x. Wang, Y. Zhang, J.-l. Cheng, and Y.-s. Li, "High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate," Transactions of Nonferrous Metals Society of China, vol. 25, no. 1, pp. 184-190, 2015.
    [9] "張瑞顯, 厚膜印刷銅鋁電極材料研究, in 電機工程學系. 2022, 國立成功大學: 臺灣博碩士論文知識加值系統."
    [10] G. Plascencia, T. Utigard, and T. Marín, "The oxidation resistance of copper-aluminum alloys at temperatures up to 1,000 C," JOM, vol. 57, pp. 80-84, 2005.
    [11] A. Klassert and L. Tikana, "Copper and copper–nickel alloys–an overview," Corrosion behaviour and protection of copper and aluminium alloys in seawater, pp. 47-61, 2007.
    [12] G. Lojen et al., "Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons," Journal of Materials Processing Technology, vol. 162, pp. 220-229, 2005.
    [13] R. Richtmyer, "Dielectric resonators," Journal of applied physics, vol. 10, no. 6, pp. 391-398, 1939.
    [14] M. Sebastian, R. Ubic, and H. Jantunen, "Low-loss dielectric ceramic materials and their properties," International Materials Reviews, vol. 60, no. 7, pp. 392-412, 2015.
    [15] I. M. Reaney and D. Iddles, "Microwave dielectric ceramics for resonators and filters in mobile phone networks," Journal of the American Ceramic Society, vol. 89, no. 7, pp. 2063-2072, 2006.
    [16] D. Zhou et al., "Novel temperature stable high-ε r microwave dielectrics in the Bi2O3–TiO2–V2O5 system," Journal of Materials Chemistry C, vol. 4, no. 23, pp. 5357-5362, 2016.
    [17] Y.-C. Liou, W.-H. Shiu, and C.-Y. Shih, "Microwave ceramics Ba5Nb4O15 and Sr5Nb4O15 prepared by a reaction-sintering process," Materials Science and Engineering: B, vol. 131, no. 1-3, pp. 142-146, 2006.
    [18] C.-Y. Tsao, W.-H. Tuan, and K.-C. Feng, "De-sintering of Ba5Nb4O15 ceramic and its influence on microwave characteristics," Journal of the European Ceramic Society, vol. 37, no. 4, pp. 1517-1521, 2017.
    [19] D. L. Johnson, "Solid-state sintering," in Concise Encyclopedia of Advanced Ceramic Materials: Elsevier, 1991, pp. 454-458.
    [20] R. M. German, P. Suri, and S. J. Park, "Liquid phase sintering," Journal of materials science, vol. 44, pp. 1-39, 2009.
    [21] N. Lóh, L. Simão, C. Faller, A. De Noni Jr, and O. Montedo, "A review of two-step sintering for ceramics," Ceramics International, vol. 42, no. 11, pp. 12556-12572, 2016.
    [22] H. Palmour III and T. Hare, "Rate controlled sintering revisited," in Sintering’85: Springer, 1987, pp. 17-34.
    [23] M. Y. Chu, L. C. De Jonghe, M. K. Lin, and F. J. Lin, "Precoarsening to improve microstructure and sintering of powder compacts," Journal of the American Ceramic Society, vol. 74, no. 11, pp. 2902-2911, 1991.
    [24] I.-W. Chen and X.-H. Wang, "Sintering dense nanocrystalline ceramics without final-stage grain growth," Nature, vol. 404, no. 6774, pp. 168-171, 2000.

    無法下載圖示 校內:2028-08-14公開
    校外:2028-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE