| 研究生: |
蔡居甫 Tsai, Chu-Fu |
|---|---|
| 論文名稱: |
含括電壓平衡控制及寬輸出電壓範圍考量之新型直流轉換器研製 Development of a Novel DC-DC Converter Incorporating Voltage Balancing Control and Wide Output Voltage Range Considerations |
| 指導教授: |
黃世杰
Huang, Shyh-Jier |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 114 |
| 語文別: | 英文 |
| 論文頁數: | 117 |
| 中文關鍵詞: | 寬範圍輸出電壓 、電壓平衡 、對稱相移控制 |
| 外文關鍵詞: | Wide output voltage range, voltage balance, symmetrical phase shift control |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著全球環保意識的提升,電動車已逐漸成為交通運輸的發展趨勢。由於不同類型電動車的電壓與功率規格各異,電動車充電器必須具備寬輸出電壓範圍的特性,才能滿足多樣化的充電需求。因此,本論文旨在研發一種具有電壓平衡控制與寬輸出電壓範圍之轉換器架構,並針對其電路設計、控制方法及實驗結果進行深入分析與探討。
本論文提出一種隔離型三階式直流-直流轉換器,結合雙主動橋電路架構,並將對稱相移控制與電壓平衡控制方法整合至系統中。此方法在實現寬輸出電壓範圍的同時,能有效解決三階式直流-直流轉換器因元件不匹配或開關時間不對稱所引起的電容電壓不平衡問題。透過實驗驗證,本論文所提出的架構具有可行性。此外,本文還提出一種二次側有源橋式整流器的串並聯組合設計。在低輸出電壓時,二次側電路採並聯組合;而在高輸出電壓時,則採串聯組合。與單一電路相比,二次側的串並聯組合設計可進一步擴展輸出電壓範圍,並提升轉換效率。本論文所設計的電路系統不僅具備寬輸出電壓範圍和輸入側電容電壓平衡特性,並在負載變動時,足以穩定維持輸出電壓,對於電動車充電器的設計與開發具有參考價值。
With the growing global awareness of environmental protection, electric vehicles (EVs) have gradually become a major trend in transportation development. Since different types of EVs have varying voltage and power specifications, EV chargers must feature a wide output voltage range to accommodate diverse charging requirements. Therefore, this dissertation aims to develop a converter architecture that incorporates voltage balancing control and a wide output voltage range, with detailed analyses and discussions on its circuit design, control method, and experimental results.
This dissertation proposes an isolated three-phase DC-DC converter integrated with a dual-active bridge (DAB) circuit structure, which also incorporates symmetric phase-shift control along with voltage balance control methods. This approach not only achieves a wide output voltage range but also effectively resolves the capacitor voltage imbalance caused by component mismatch or asymmetric switching times in three-phase DC-DC converters. The feasibility of the proposed architecture is validated through experiments. Moreover, this dissertation presents a series-parallel combination design for the secondary side active bridge rectifier. At low output voltage, the secondary circuit operates in parallel, while at high output voltage, it operates in series. Compared to a single circuit, the series-parallel combination design on the secondary side further extends the output voltage range and improves conversion efficiency. This designed circuit system not only features a wide output voltage range and input-side capacitor voltage balancing characteristics but also maintains stable output voltage during load variations, making it a valuable reference for the design and development of electric vehicle chargers.
[1] International Energy Agency, “Global EV Outlook 2021”, [Online]. Available: https://www.iea.org/reports/global-ev-outlook-2021.
[2] M. Yilmaz and P. T. Krein, “Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles”, IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2151-2169, May 2013.
[3] A. Konig, L. Nicoletti, D. Schroder, S. Wolff, A. Waclaw, and M. Lienkamp, “An Overview of Parameter and Cost for Battery Electric Vehicles,” World Electr. Vehicle J., vol. 12, no. 21, pp. 1-29, Feb. 2021.
[4] X. Li, Z. Wang, L. Zhang, F. Sun, D. Cui, C. Hecht, J. Figgener, and D. Sauer, “Electric Vehicle Behavior Modeling and Applications in Vehicle-Grid Integration: An overview,” Energy., vol. 268, Art. no. 126647, Apr. 2023.
[5] X. Sun, Z. Jin, M. Xue, and X. Tian, “Adaptive ECMS with Gear Shift Control by Grey Wolf Optimization Algorithm and Neural Network for Plug-In Hybrid Electric Buses,” IEEE Trans. Ind. Electron., vol. 71, no. 1, pp. 667-677, Jan. 2024.
[6] M. Safayatullah, M. T. Elrais, S. Ghosh, R. Rezaii and I. Batarseh, “A Comprehensive Review of Power Converter Topologies and Control Methods for Electric Vehicle Fast Charging Applications,” IEEE Access., vol. 10, pp. 40753-40793, Apr. 2022.
[7] A. Ahmad, Z. Qin, T. Wijekoon, and P. Bauer, “An Overview on Medium Voltage Grid Integration of Ultra-Fast Charging Stations: Current Status and Future Trends,” IEEE Open J. Ind. Electron. Soc., vol. 3, pp. 420-447, Jun. 2022.
[8] S. S. G. Acharige, M. E. Haque, M. T. Arif, N. Hosseinzadeh, K. N. Hasan and A. M. T. Oo, “Review of Electric Vehicle Charging Technologies, Standards, Architectures, and Converter Configurations,” IEEE Access., vol. 11, pp. 41218-41255, Apr. 2023.
[9] T. Chen, X. P. Zhang, J. Wang, J. Li, C. Wu, M. Hu and H. Bian, “A Review on Electric Vehicle Charging Infrastructure Development in the UK,” IEEE J. Mod. Power Syst. Clean Energy., vol. 8, no. 2, pp. 193-205, Mar. 2020.
[10] G. Pan, Y. Zhou, H. Zhang, J. Wang and S. Xia, “A Variable-Mode Bidirectional Isolated Power Converter for Wide Voltage-Transfer Ratio Applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 11, no. 3, pp. 3152-3162, June. 2023.
[11] A. Ali, H. H. H. Mousa, M. F. Shaaban, M. A. Azzouz and A. S. A. Awad, “A Comprehensive Review on Charging Topologies and Power Electronic Converter Solutions for Electric Vehicles,” IEEE J. Mod. Power Syst. Clean Energy., vol. 12, no. 3, pp. 675-694, May. 2024.
[12] M. S. Sikandar, M. Darwish, and C. Marouchos, “Review of Wireless Charging of EV,” in Proc. Int. Univ. Power Eng. Conf. (UPEC)., Istanbul, Turkey, pp. 1-4, Nov. 2022.
[13] A. Trivino, J. M. Gonzalez-Gonzalez, and J. A. Aguado, “Wireless Power Transfer Technologies Applied to Electric Vehicles: A Review,” Energies., vol. 14, no. 6, p. 1574, Mar. 2021.
[14] S. Y. R. Hui, W. Zhong, and C. K. Lee, “A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer,” IEEE Trans. Power Electron., vol. 29, no. 9, pp. 4500-4511, Sep. 2014.
[15] S. S. Valtchev, E. N. Baikova, and L. R. Jorge, “Electromagnetic Field as The Wireless Transporter of Energy,” Facta Univ. Ser.: Electron. Energet., vol. 25, no. 3, pp. 171-181, Oct. 2012.
[16] D. B. Kshatri, S. Shrestha, and B. Shrestha, “A Brief Overview of Wireless Power Transfer Techniques,” Int. J. Adv. Smart Converg., vol. 4, no. 2, pp. 1-5, Nov. 2015.
[17] S. Niu, H. Xu, Z. Sun, Z.Y. Shao and L. Jian, “The State-Of-The-Arts of Wireless Electric Vehicle Charging Via Magnetic Resonance: Principles, Standards, and Core Technologies,” Renew. Sustain. Energy Rev., vol.114, p. 109302, Oct. 2019.
[18] W. Xu, X. Wang, W. Li, S. Li and C. Lu, “Research On Test and Evaluation Method of Laser Wireless Power Transmission System,” Eurasip J. Adv. Signal Process., vol. 2022, no. 1, pp. 1-18, Mar. 2022.
[19] S. C. Moon, B. C. Kim, S. Y. Cho and G. W. Moon., “Analysis and Design of a Wireless Power Transfer System with an Intermediate Coil for High Efficiency,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 1034-1040, Nov. 2014.
[20] V. Monteiro, J. C. Ferreira, A. A. N. Melendez, C. Couto and J. L. Afonso, “Experimental Validation of a Novel Architecture Based On a Dual-Stage Converter for Off-Board Fast Battery Chargers of Electric Vehicles,” IEEE Trans. Veh. Technol., vol. 67, no. 2, pp. 1000-1011, Feb. 2018.
[21] A. Ahmad, M. S. Alam, and R. Chabaan, “A Comprehensive Review of Wireless Charging Technologies for Electric Vehicles,” IEEE Trans. Transp. Electrif., vol. 4, no. 1, pp. 38-63, Mar. 2018.
[22] C.-S. Wang, S.-H. Zhang, Y.-F. Wang, B. Chen, and J.-H. Liu, “A 5-kW Isolated High Voltage Conversion Ratio Bidirectional CLTC Resonant DC–DC Converter with Wide Gain Range and High Efficiency,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 340-355, Jan. 2019.
[23] J. Huang, X. Zhang, Z. Shua, X. Zhang, P. Wang, L. H. Koh, J. Xiao and X. Tong, “Robust Circuit Parameters Design for the CLLC-Type DC Transformer in The Hybrid AC–DC Microgrid,” IEEE Trans. Ind. Electron., vol. 66, no. 3, pp. 1906-1918, Mar. 2019.
[24] B. Li, Q. Li, F. C. Lee, Z. Liu, and Y. Yang, “A High-Efficiency High Density Wide-Bandgap Device-Based Bidirectional On-Board Charger,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1627-1636, Sep. 2018.
[25] T. Mishima, K. Akamatsu, and M. Nakaoka, “A High Frequency-Link Secondary-Side Phase-Shifted Full-Range Soft-Switching PWM DC–DC Converter with ZCS Active Rectifier for EV Battery Chargers,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5758-5773, Dec. 2013.
[26] J. Dudrik, M. Bodor, and M. Pástor, “Soft-Switching Full-Bridge PWM DC–DC Converter with Controlled Output Rectifier and Secondary Energy Recovery Turn-Off Snubber,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4116-4125, Aug. 2014.
[27] J.-H. Kim, I.-O. Lee, and G.-W. Moon, “Analysis and Design of a Hybrid-Type Converter for Optimal Conversion Efficiency in Electric Vehicle Chargers,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2789-2800, Apr. 2017.
[28] J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581-1592, May 2014
[29] H. Wang, S. Dusmez, and A. Khaligh, “Maximum Efficiency Point Tracking Technique for LLC-Based PEV Chargers Through Variable DC Link Control,” IEEE Trans. Ind. Electron., vol. 61, no. 11, pp. 6041-6049, Nov. 2014.
[30] A. Coccia, F. Canales, P. Barbosa, and S. Ponnaluri, “Wide Input Voltage Range Compensation in DC/DC Resonant Architectures for Onboard Traction Power Supplies,” in Proc. Eur. Conf. Power Electron. Appl. (EPE ECCE Europe)., pp. 1-10, Sep. 2007.
[31] Y. Nakakohara, H. Otake, T. M. Evans, T. Yoshida, M. Tsuruya, and K. Nakahara, “Three-Phase LLC Series Resonant DC/DC Converter Using SiC MOSFETs to Realize High-Voltage and High-Frequency Operation,” IEEE Trans. Ind. Electron., vol. 63, no. 4, pp. 2103-2110, Apr. 2016.
[32] H.-M. Yoon, J.-H. Kim, and E.-H. Song, “Design of a Novel 50 kw Fast Charger for Electric Vehicles,” J. Central South Univ., vol. 20, no. 2, pp. 372-377, 2013.
[33] H. van Hoek, M. Neubert, and R. W. De Doncker, “Enhanced Modulation Strategy for a Three-Phase Dual Active Bridge-Boosting Efficiency of an Electric Vehicle Converter,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5499-5507, Dec. 2013.
[34] L. Xue, Z. Shen, D. Boroyevich, P. Mattavelli, and D. Diaz, “Dual Active Bridge-Based Battery Charger for Plug-In Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7299-7307, Dec. 2015.
[35] L. Xue, M. Mu, D. Boroyevich, and P. Mattavelli, “The Optimal Design of GaN-Based Dual Active Bridge for Bi-Directional Plug-In Hybrid Electric Vehicle (PHEV) Charger,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), pp. 602-608, Mar. 2015.
[36] H. Akagi, T. Yamagishi, N. M. L. Tan, S. Kinouchi, Y. Miyazaki, and M. Koyama, “Power-Loss Breakdown of a 750-V 100-kW 20-kHz Bidirectional Isolated DC–DC Converter Using SiC-MOSFET/SBD Dual Modules,” IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 420-428, Jan. 2015.
[37] J. E. Huber and J.W. Kolar, “Applicability of Solid-State Transformers in Today’s and Future Distribution Grids,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 317-326, Jan. 2019.
[38] S. Zhao, Q. Li, F. C. Lee, and B. Li, “High-Frequency Transformer Design for Modular Power Conversion from Medium-Voltage AC to 400 VDC,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7545-7557, Sep. 2018.
[39] B. Zhao, Q. Song, W. Liu, and W. Sun, “Current-Stress-Optimized Switching Strategy of Isolated Bidirectional DC–DC converter with Dual-Phase-Shift Control,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4458-4467, Oct. 2013.
[40] J. Huang, Y. Wang, Z. Li, and W. Lei, “Unified Triple-Phase-Shift Control to Minimize Current Stress and Achieve Full Soft-Switching of Isolated Bidirectional DC-DC Converter,” IEEE Trans. Ind. Electron., vol. 63, no. 7, pp. 4169-4179, Jul. 2016.
[41] J. Hiltunen, V. Väisänen, R. Juntunen, and P. Silventoinen, “Variable Frequency Phase Shift Modulation of a Dual Active Bridge Converter,” IEEE Trans. Power Electron., vol. 30, no. 12, pp. 7138-7148, Dec. 2015.
[42] A. Taylor, G. Liu, H. Bai, A. Brown, P. M. Johnson, and M. McAmmond, “Multiple-Phase-Shift Control for a Dual Active Bridge to Secure Zero-Voltage Switching and Enhance Light-Load Performance,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4584-4588, Jun. 2018.
[43] C.-S. Wang, S.-H. Zhang, Y.-F. Wang, B. Chen, and J.-H. Liu, “A 5-kW Isolated High Voltage Conversion Ratio Bidirectional CLTC Resonant DC–DC Converter with Wide Gain Range and High Efficiency,” IEEE Trans. Power Electron., vol. 34, no. 1, pp. 340-355, Jan. 2019.
[44] B. Li, Q. Li, F. C. Lee, Z. Liu, and Y. Yang, “A High-Efficiency High Density Wide-Bandgap Device-Based Bidirectional On-Board Charger,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 6, no. 3, pp. 1627-1636, Sep. 2018.
[45] T. Mishima, K. Akamatsu, and M. Nakaoka, “A High Frequency-Link Secondary-Side Phase-Shifted Full-Range Soft-Switching PWM DC–DC Converter with ZCS Active Rectifier for EV Battery Chargers,” IEEE Trans. Power Electron., vol. 28, no. 12, pp. 5758-5773, Dec. 2013.
[46] J. Dudrik, M. Bodor, and M. Pástor, “Soft-Switching Full-Bridge PWM DC–DC converter with Controlled Output Rectifier and Secondary Energy Recovery Turn-Off Snubber,” IEEE Trans. Power Electron., vol. 29, no. 8, pp. 4116-4125, Aug. 2014.
[47] J.-H. Kim, I.-O. Lee, and G.-W. Moon, “Analysis and Design of a Hybrid-Type Converter for Optimal Conversion Efficiency in Electric Vehicle Chargers,” IEEE Trans. Ind. Electron., vol. 64, no. 4, pp. 2789-2800, Apr. 2017.
[48] J. Deng, S. Li, S. Hu, C. C. Mi, and R. Ma, “Design Methodology of LLC Resonant Converters for Electric Vehicle Battery Chargers,” IEEE Trans. Veh. Technol., vol. 63, no. 4, pp. 1581-1592, May. 2014.
[49] Y. Yan, H. Bai, A. Foote, and W. Wang, “Securing Full-Power-Range Zero Voltage Switching in Both Steady-State and Transient Operations for a Dual Active-Bridge-Based Bidirectional Electric Vehicle Charger,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7506-7519, Jul. 2020.
[50] S. A. Assadi, H. Matsumoto, M. Moshirvaziri, M. Nasr, M. S. Zaman, and O. Trescases, “Active Saturation Mitigation in High-Density Dual-Active Bridge DC–DC Converter for On-Board EV Charger Applications,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 4376-4387, Apr. 2020.
[51] Y. Xuan, X. Yang, W. Chen, T. Liu, and X. Hao, “A Three-Level Dual Active-Bridge Converter with Blocking Capacitors for Bidirectional Electric Vehicle Charger,” IEEE Access, vol. 7, pp. 173838-173847, Dec. 2019.
[52] Y. Shi, R. Li, Y. Xue, and H. Li, “Optimized Operation of Current-Fed Dual Active Bridge DC–DC Converter for PV Applications,” IEEE Trans. Ind. Electron., vol. 62, no. 11, pp. 6986-6995, Nov. 2015.
[53] B. Li, F. C. Lee, Q. Li, and Z. Liu, “Bi-Directional on-Board Charger Architecture and Control for Achieving Ultra-High Efficiency with Wide Battery Voltage Range,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC)., pp. 3688-3694, Mar. 2017.
[54] C. Liu, B. Sen, J. Wang, C. Gould, and K. Colombage, “A CLLC Resonant Converter Based Bidirectional EV Charger with Maximum Efficiency Tracking,” in Proc. 8th IET Int. Conf. Power Electron., Mach. Drives (PEMD)., pp. 1-6, Apr. 2016.
[55] Z. U. Zahid, Z. M. Dalala, R. Chen, B. Chen, and J.-S. Lai, “Design of Bidirectional DC–DC Resonant Converter for Vehicle-To-Grid (V2G) Applications,” IEEE Trans. Transport. Electrific., vol. 1, no. 3, pp. 232-244, Oct. 2015.
[56] L. Shi, B. Liu, S. Duan, J. He, T. Cai, J. Sun, and W. Sheng, “Analysis of Voltage Auto-Balance Characteristic For Three-Level LLC Converter with Clamped Diodes and Flying Capacitor,” in Proc. 2018 IEEE Energy Convers. Congr. Expo. (ECCE), Portland, OR, USA, pp. 1556-1562, Sep. 2018.
[57] H. Li, Z. Zhang, S. Wang, J. Tang, X. Ren, and Q. Chen, “A 300-KHz 6.6-KW SiC Bidirectional LLC Onboard Charger,” IEEE Trans. Ind. Electron., vol. 67, no. 2, pp. 1435-1445, Feb. 2020.
[58] J. Sun, M. Xu, D. Reusch, and F. C. Lee, “High Efficiency Quasi-Parallel Voltage Regulators,” in Proc. IEEE Appl. Power Electron. Conf. Expo. (APEC), Austin, USA, pp. 811-817, Feb. 2008.
[59] Le Zhang, X. Wu, and H. Chen, “1MHz LLC Resonant DC-DC Converter with PWM Output Regulation Capability,” in Proc. IEEE Int. Power Electron. Motion Control Conf. (IPEMC)., Hefei, China, pp. 445-450, May. 2016.
[60] M. H. Ahmed, C. Fei, F. C. Lee and Q. Li, “Single-Stage High-Efficiency]48/1 V Sigma Converter with Integrated Magnetics,” IEEE Trans. Ind. Electron., vol. 67, no. 1, pp. 192-202, Jan. 2020.
[61] T. Liu, Y. Han, X. Wu, S. Yang, and G. Xie, “A MHz Regulated DC Transformer with Wide Voltage Range,” in Proc. IEEE Int. Power Electron. Appl. Conf. Expo (PEAC)., Shenzhen, China, pp. 1-4, Nov. 2018.
[62] Y. Liao, G. Xu, T. Peng, Y. Sun, D. Liu, Y. Yang, and M. Su, “An LLC-DAB Bidirectional DCX Converter with Wide Load Range ZVS and Reduced Switch Count,” IEEE Trans. Power Electron., vol. 37, no. 2, pp. 2250-2263, Feb. 2022.
[63] H. Wu, Y. Lu, T. Mu, and Y. Xing, “A Family of Soft-Switching DC–DC Converters Based on a Phase-Shift-Controlled Active Boost Rectifier,” IEEE Trans. Power Electron., vol. 30, no. 2, pp. 657-667, Feb. 2015.
[64] C. Bai, B. Han, B. H. Kwon, and M. Kim, “Highly Efficient Bidirectional Series-Resonant DC/DC Converter Over Wide Range of Battery Voltages,” IEEE Trans. Power Electron., vol. 35, no. 4, pp. 3636-3650, Apr. 2020.
[65] Q. Zhao, J. Zhang, Y. Gao, D. Wang and Q. Yang, “Hybrid Variable Frequency LLC Resonant Converter with Wide Output Voltage Range,” IEEE Tran. Power Electron, vol. 38, no. 9, pp. 11038-11049, Sep. 2023.
[66] C. Li, M. Zhou and H. Wang, “An H5-Bridge-Based Asymmetric LLC Resonant Converter with an Ultrawide Output Voltage Range,” Trans. Ind. Electron, vol. 67, no. 11, pp. 9503-9513, Nov. 2020.
[67] M. -S. Huang, J. -C. Hu, S. -G. Chen, W. -H. Hsu and C. -W. Huang, “Three-Level DNPC-LLC Converter with Hybrid Modulation Method for Wide Output Voltage Applications,” IEEE Open J. Power Electron., vol. 6, pp. 354-370, Feb. 2025.
[68] I. Barbi, R. Gules, R. Redl, and N. O. Sokal, “DC/DC Converter: Four switches Vpk=Vin/2, Capacitive Turn-off Snubbing, ZV Turn-on,” IEEE Trans. Power Electron., vol. 19, no. 4, pp. 918-927, Jul. 2004.
[69] W. Li, S. Zong, F. Liu, H. Yang, X. He, and B. Wu, “Secondary-Side Phase-Shift-Controlled ZVS DC/DC Converter with Wide Voltage Gain for High Input Voltage Applications,” IEEE Trans. Power Electron., vol. 28, no. 11, pp. 5128-5139, Nov. 2013.
[70] W. Liu, H. Jin, W. Yao, and Z. Lu, “An Interleaved PWM Method with Better Voltage-Balancing Ability for Half-Bridge Three-Level DC/DC Converter,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4594-4598, Jun. 2018.
[71] H. Huang, “Designing an LLC Resonant Half-Bridge Power Converter”, TI PSDS., Texas Instrument, 2011.
[72] X. Zhao, L. Zhang, R. Born, and J. S. Lai, “A High-Efficiency Hybrid Resonant Converter with Wide-Input Regulation for Photovoltaic Applications,” IEEE Trans. Ind. Electron., vol. 64, no. 5, pp. 3684-3695, May 2017.
[73] L. Zhu, Z. Sheng, F. Peng, and L. Yang, “Control Strategy of Half-Bridge Three-Level LLC Resonant Converters with Wide Output Voltage Range,” IEEE Trans. Plasma Sci., vol. 50, no. 11, pp. 4381-4386, Nov. 2022.
[74] Ned Mohan, Tore M. Undeland, and William P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd. New York (N.Y.): Wiley, 2003
[75] H. Wu, T. Mu, X. Gao and Y. Xing, “A Secondary-Side Phase-Shift Controlled LLC Resonant Converter with Reduced Conduction Loss at Normal Operation for Hold-Up Time Compensation Application,” IEEE Trans. Power Electron., vol. 30, no. 10, pp. 5352-5357, Oct. 2015.
[76] W. Liu, H. Jin, W. Yao, and Z. Lu, “An Interleaved PWM Method with Better Voltage-Balancing Ability for Half-Bridge Three-Level DC/DC Converter,” IEEE Trans. Power Electron., vol. 33, no. 6, pp. 4594-4598, Jun. 2018.