| 研究生: |
陳彥儒 Chen, Yen-Jue |
|---|---|
| 論文名稱: |
供獵能器之低漣波雙導通時間降壓電路 Dual on Time (DOT) Buck Converters of Low Ripple for Energy Harvesters |
| 指導教授: |
楊慶隆
Yang, Chin-Lung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 固定導通時間 、降壓電路 、輕載 |
| 外文關鍵詞: | constant on time, buck, light load |
| 相關次數: | 點閱:46 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一新穎供獵能器使用之低漣波雙導通時間降壓電路。本文針對切換式降壓穩壓電路之固定導通時間(Constant-On-Time, COT)控制技術進行探討與模擬實作。傳統之固定導通時間控制技術存有潛在的效率與漣波權衡限制,因而本論文提出「雙導通時間控制」(Dual On-Time)技術。利用兩個不同導通時間控制,可提供設計者在簡單之架構下,藉優化過程設計出最佳的導通時間,在極輕負載下同時實現低漣波且維持高效率的降壓穩壓電路。
本文中所模擬的雙導通時間控制電路工作電壓範圍為2.2 V ~ 3.3 V,負載電流範圍為0.5 mA ~ 2 mA,最大模擬轉換效率為94.6%;輸出電壓為1.3 V,輸出漣波< 30 mV,在負載電流為0.05 mA時,模擬轉換效率仍有80%以上;適合於獵能技術之應用。
In this thesis, a novel low-ripple dual on-time (DOT) buck circuit for energy harvesters. Constant on-time (Constant-On-Time, COT)-typed control technologies for buck switching regulator circuits is investigated, simulated, and implemented. There are potential tradeoff limitations between efficiency and ripple for traditional constant on-time control technologies, so this thesis presents a 'Dual On-Time' (DOT) technology. By using two different on-time periods, the designer can achieve high efficiency buck regulator circuit while maintaining low ripple in an ultra-light load after optimization based on the simple architecture.
The proposed DOT control circuit is operated at the voltage ranging from 2.2 V to 3.3 V in simulation. The load current ranges from 0.5 mA to 2 mA. The maximum conversion efficiency is achieved to 94.6%. The output voltage is 1.3 V, and the output ripple is less than 30 mV. At the load current of 0.05 mA, simulated conversion efficiency remains more than 80%, so the proposed DOT circuit is suitable for energy harvesting technologies.
[1] Gene Frantz, et al . “Approaching the horizon of energy harvesting TI technology opens new frontiers for perpetual devices” June, 2012.
[2] LTC3588 Nanopower Energy Harvesting Power Supply, Linear Technique, [Online]. Available: http://cds.linear.com/docs/en/datasheet/35881fc.pdf.
[3] BQ25504 Ultra Low Power Boost Converter with Battery Management for Energy Harvester, [Online]. http://www.ti.com/lit/ds/symlink/bq25504.pdf.
[4] R. Redl and S. Jian, “Ripple-Based Control of Switching Regulators-An Overview,” IEEE Transactions on Power Electronics vol. 24, pp. 2669–2680, 2009.
[5] R. Redl (2009). Enhanced Ripple Regulators. pp.255–268 Available:http://link.springer.com/chapter/10.1007%2F978-1-4020-8944-2_14#page-1
[6] 王禎佑, 漣波控制切換式升壓調節器之研究與設計: 國立成功大學碩士論文, 2012.
[7] J. Kim and C. Kim, “A DC-DC Boost Converter with Variation-Tolerant MPPT Technique and Efficient ZCS Circuit for Thermoelectric Energy Harvesting Applications,” IEEE Transactions on Power Electronics vol. 28, no. 8, pp. 3827–3833, 2013.
[8] Y. H. Lee, S. C. Huang, S. W. Wang, and K. H. Chen, “Fast Transient (FT) Technique with Adaptive Phase Margin (APM) for Current Mode DC-DC Buck Converters,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, 2012
[9] W. C. Chen, C. S. Wang, Y. P. Su, Y. H. Lee, C. C. Lin, K. H. Chen and M.J. Du, “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On Time Control for Buck Converter with Multilayer Ceramic Capacitors,” IEEE Transactions on Power Electronics vol. 28, pp. 2366–2376, 2013
[10] Y. Y. Mai and P. K. T Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter without Using Large ESR Capacitor,” IEEE Transactions on Circuits System II, Exp. Briefs, vol. 55, no. 8, pp. 748–752, 2008.
[11] Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter with Small ESR Capacitor,” IEEE Transactions on Power Electronics vol. 25, no. 4, pp. 829–838, 2010.
[12] W. C. Chen, et al., “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter with Multilayer Ceramic Capacitors,” IEEE Transactions on Power Electronics vol. 28, no. 5, pp. 2366–2376, 2013.
[13] Siyuan Zhou, Gabriel A. Rincon-Mora, “A High Efficiency, Soft Switching DC–DC Converter With Adaptive Current-Ripple Control for Portable Applications,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 4, pp. 319–323, 2006
[14] Xiaocheng Jing and Philp K. T. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum,” IEEE J. Solid-State Circuits, vol. 48, no 10, pp. 2442–2456, 2013.
[15] H. H. Huang, C. L. Chen and K. H. Chen, “Adaptive Window Control (AWC) Technique for Hysteresis DC-DC Buck Converters with Improved Light and Heavy Load Performance,” IEEE Transactions on Power Electronics vol. 24, no. 6, pp. 1607–1617, 2009.
[16] L. K. Wong and T. K. Man, “Maximum Frequency for Hysteretic Control COT Buck Converters,” International Power Electronics and Motion Control Conference (EPE-PEMC 2008), pp. 475–478.
[17] I. C. Wei, Y. C. Lin, C. J. Chen and Dan Chen, “Stability Issues and Modeling of Ripple-Based Constant on Time Control Schemes Operating in Discontinuous Conduction Mode,” in IET Power Electronics 8th, 2013
[18] W. C. Chen, et al., “±3% Voltage Variation and 95% Efficiency 28nm Constant On-Time Controlled Step-down Switching Regulator Directly Supplying to Wi-Fi Systems,” Symposium on VLSI Circuits Digest of Technical Papers, 2014
[19] C. H. Liu, C.Y. Hsieh, Y. C. Hsieh, T. J. Tai, and K. H. Chen, “SAR-Controlled Adaptive Off-Time Technique Without Sensing Resistor for Achieving High Efficiency and Accuracy LED Lighting System,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 6, pp. 1384–1394, 2010
[20] T. C. Huang, et al., “A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With α-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control,” IEEE J. Solid-State Circuits, vol. 47, no 4, pp. 852–862, 2012.
[21] C. H. Tsai, S. M. Lin, and C. S. Huang, “A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique,” IEEE Transactions on Power Electronics vol. 28, no. 8, pp. 3949–3957, 2013.
[22] Robert W. Erickson and Dragan Maksimove, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001
[23] X. Zhang, P.-H. Chen, Y. Okuma, K. Ishida, Y. Ryu, K. Watanabe, T. Sakurai and M. Takamiya “A 0.6V Input CCM/DCM Operating Digital Buck Converter in 40nm CMOS” IEEE Journal of Solid-State Circuits (JSSC), vol. 49, no. 11, pp. 2377–2386, 2014.
[24] 蔡建泓,The Design and Implementation of Digitally Controlled 課程講義. 2014
[25] Introduction to MATLAB/Simulink for switched-mode power converters, CoPEC [online]. http://ecee.colorado.edu/~ecen5807/course_material/digital/5807_Simulink_tutorial.pdf
[26] V. Michal, “On the Low-power Design, Stability Improvement and Frequency Estimation of the CMOS Ring Oscillator,” 22nd International Conference Radioelektronika 2012.
[27] C. C. Tsai, C. H. Yang, J. H. Shiau, and B. T. Yeh, “Digitally Controlled Switching Converter With Automatic Multimode Switching,” IEEE Transactions on Power Electronics vol. 29, no. 4, pp. 1830–1839, 2014.
[28] Mark Telefus et al., “Pulse Train Control Technique for Flyback Converter,” IEEE Transactions on Power Electronics vol. 19, no. 3, pp. 757–764, 2004.
[29] M. M. Nejad and M. Sachdev, “A Monotonic Digitally Controlled Delay Element,” IEEE J. Solid-State Circuit, vol. 40, no. 11, pp. 2212–2219, 2005.
[30] Arbetter, B, Erickson, R.and Maksimovic, D. “DC-DC Converter Design for Battery-Operated System,” Power Electronics Specialists Conference, Vol. 1, pp.104–109, 1995
[31] S. Bandyopadhyay, Y. K. Ramadass, and A. P. Chandrakasan, “20 μA to 100 mA DC-DC Converter With 2.8-4.2 V Battery Supply for Portable Applications in 45 nm CMOS,” IEEE J. Solid-State Circuits, vol. 46, no 12, pp. 2807–2820, 2011.
[32] K. H. Chen, C. J. Chang, and T. H. Liu, “Bidirectional Current-Mode Capacitor Multiplies for On-Chip Compensation,” IEEE Transactions on Power Electronics vol. 23, no. 1, pp. 180–188, 2008.
校內:2018-09-04公開