| 研究生: |
侯俊良 Hou, Jiun-Liang |
|---|---|
| 論文名稱: |
MCT陶瓷介電特性之研究及其在微波元件之應用 Dielectric Properties and Microwave Applications of MCT Ceramics |
| 指導教授: |
黃正亮
Huang, Cheng-Liang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 89 |
| 中文關鍵詞: | 微波元件 、陶瓷介電 |
| 外文關鍵詞: | microwave, ceramics, MCT |
| 相關次數: | 點閱:64 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
在本論文內將討論0.95MgTiO3 – 0.05CaTiO3介電陶瓷材料,藉由分別添加不同燒結促進劑ZnO、B2O3、SiO2,探討對其微波特性的影響。
材料方面分為三部分:第一部份為單一添加物對0.95MgTiO3 – 0.05CaTiO3微波性質之影響;第二部份為微量添加ZnO對0.95MgTiO3 – 0.05CaTiO3微波性質之影響;第三部份為混合此三種玻璃添加物對0.95MgTiO3 – 0.05CaTiO3微波性質之影響。實驗結果顯示,添加1wt%的ZnO可有效降低燒結溫度到1350℃,此時可得最佳介電特性εr~20.3,Q×f~66300,因此改善了0.95MgTiO3 – 0.05CaTiO3介電陶瓷的微波特性。
此外,本論文以FR4、氧化鋁、0.95MgTiO3 – 0.05CaTiO3+1wt%ZnO三種不同基板,製作設計一個緊密的微帶線步階阻抗帶通濾波器,中心頻率定為2.4GHz,頻寬10%。
Abstract
The microwave properties of 0.95MgTiO3 – 0.05CaTiO3 dielectric ceramic materials are discussed in this paper. By adding different sintering aids ZnO、B2O3 and SiO2 respectively, we study the existence effects of liquid phase for the microwave properties of 0.95MgTiO3 – 0.05CaTiO3.
There are three part about the dielectric material. First, we discuss the properties of 95MCT with single sitering aids. Second, we discuss 0.95MgTiO3 – 0.05CaTiO3 adding a trace of ZnO. Third, we mix 0.95MgTiO3 – 0.05CaTiO3 with those three different sintering aids.. The experiment results show that 0.95MgTiO3 – 0.05CaTiO3 with 1wt% ZnO addition can efficiently reduce sintering temperature to 1350 oC, and it appears the best property: εr~20.3, Q×f~66300. Hence, the microwave properties of 0.95MgTiO3 – 0.05CaTiO3 dielectric ceramic materials is improved.
In addition, we design and fabricate compact SIR band-pass filters with 2.4GHz central frequency and 10% bandwidth on FR4, Al2O3 and 0.95MgTiO3 – 0.05CaTiO3 substrates.
參考文獻
[1] D. C. Woo et al., presented at the Pacific Rim Ceramic Societies meeting, Cairns, Australia, July 14-17,1996
[2] R. D. Richtmeyer Jpn. J. Appl. Phys., vol.10, p.391 , 1939.
[3] R. C. Kell et al., J.Am.Ceram.Soc. vol.56, p.352 , 1973.
[4] H. M. O’Brryan, JR. and J. Thomson, JR.: J.Am.Ceram.Soc. vol.57, p.450 , 1974.
[5] G. Wolfram. et al., Met.Res.Bull., vol.16, p.1455 , 1981.
[6] P. C. Osbond et al., Brit. Ceram. Proc., vol.36, p.167 , 1985.
[7] K. Wakino. et al., J.Am.Ceram.Soc. vol.36, p.167 , 1985
[8] S. Kawashima. Et al., Proc. Ferroelectric. Mater. Appl. Japan., vol.1, p.1455 , 1977
[9] S. Normura et al., Jpn. J. Appl. Phys., vol.21, p.L642 , 1982.
[10] W. D. kingery and J. Francl, J.Am.Ceram.Soc. vol.37, p.596, 1954
[11] W. D. kingery, Jpn. J. Appl. Phys., Vol. 30, pp.301, 1959.
[12] T. Takada et al., J.Am.Ceram.Soc. vol.36, p.2485, 1994
[13] W. D. Kingery et al., Jpn. J. Appl. Phys., Vol. 26, pp.1205-, 1955.
[14] W. D. Kingery, Ceramic Fabrication Process, John Wily, pp. 131 New York 1958.
[15] S. Timoskenko and J. N. Goodier, Theory of Elasticity, Mcgrand Hill, pp. 372, New York 1951
[16] W. D. kingery, Jpn. J. Appl. Phys., Vol. 30, pp.301, 1959.
[17] I. Bahl and P. Bhartia, Microwave solid state circuit design, chap6, John Wiley&Sons, 1988.
[18] P. A. Rizzi., Microwave Engineering Passive Circuits, chap9, Prentice Hall, 1988.
[19] Sheng-Yuan Lee “Design and Fabrication of the Planar SIR Microwave” NCKU 1998
[20] L. A. Trinogga, Guo Kaizhou, and I. C. Hunter, Practical microstrip circuit design., UK: Ellis Horwood, 1991.
[21] E. J. Denlinger, “Losses of microstrip lines,” IEEE. Trans. Microwave Theory Tech., vol. MIT-28, pp. 513–522, Jun. 1980
[22] R. A. Pucel, D. J. Masse, and C. E Hartwig, “Losses in microstrip,” IEEE. Trans. Microwave Theory Tech., vol. MIT-16, pp. 342-350, Jun. 1968.
[23] B. C. Wadell, Transmission line design handbook, chap5.
[24] Pao-You Yen, Cheng-Liang Huang, Chung-Chuang Wei“ Design and Fabrication of the Planar SIR Microwave BandPass Filter “, 1997
[25] M. Makimoto and S. Yamashita, “ Bandpass Filters Using Parallel Coupled Stripline Stepped Impedance Resonators”, IEEE Trans. Microwave Theory and Tech., Vol. MTT-28, No.12,pp. 1413-1417, Dec.1980
[26] T. Ishizaki, T. Uwano, and H. Miyake, “ An Extended Configuration of a Stepped Impedance Comb-line Filter” , IEICE Trans. Electron., Vol. E79-C, No.5, pp671-677,May. 1996
[27] D.M.Pozar, “Microwave Engineering”, Addison-Wesley Publishing Company Inc. ,U.S.A., 1990,pp.235
[28] J. Helszajn, “Microwave Planar Passive Circuits and Filters”, John Wiley & Sons, New York, pp.186-190, 1994
[29] B. W. Hakki, and P. D. Coleman, “A dielectric resonator method of measure-ng inductive capacities in the millimeter range,” IEEE. Trans. Microwave Theory Tech., vol. MTT-8, pp. 402-410, 1960
[30] Y. Kobayashi, and N. Katoh, “Microwave measurement of dielectric properties of lo-w-loss materials by dielectric rod resonator method,” IEEE Trans. Micr- owave Theory Tech., vol. MTT-33, pp. 586-592, 1985.
[31] P. Wheless, and D. Kajfez “The use of higher resonant modes in measuring the dialectric constant of Dielectric Resonators,” IEEE MTT-S Symposium Dig.,pp. 473-476, 1985
[32] Y. Kobayashi, and S. Tanaka, "Resonant modes of a dielectric resonator short-circuited at both ends by parallel conducting plates," IEEE. Trans. MicrowaveTheory Tech., vol. MTT-28, pp. 1077-1085, 1980.
[33] K. S. Hwang, Phd Thesis, Rensselaer Ploytechnic in Troy (1984).
[34] J. W. Cahn and R. B. Heady, J. Am. Ceram. p.406,1970.
[35] W. J. Huppmann and G. Petzow: Sintering process, Edited by G.C. Kuczynski (Plenum Press, New York,pp. 189, (1980).
[36] W. J. Huppmann and G. Petzow, Ber. Bunnsenges Phys. Chem.82, pp.308 (1978).
[37] R. M. German, Liquid Phase Sintering, (Plenum Press, New York 1985,ch4).
[38] J. H. Jean and C. H. Lin,“ Journal of Material Science,”24 , p500, 1989.
[39] B. C. Wadell, Transmission line design handbook, chap5.
[40] Hsin-Chin Chang, Kuang-Chung Tao “ A Multilayer bandpass Filter Integrated Into Rf Module Board “ IEEE MTT-S Digest, 1996
[41] M. Makimoto and S. Yamashita , “ A Compact Bandpass Filter Using Stepped Impedance Resonators “ ,Proc. IEEE, Vol.67,No.1, pp. 16-19,Jan. 1979