簡易檢索 / 詳目顯示

研究生: 陳雅琪
Chen, Ya-Chi
論文名稱: 採用數位預先校準技術之0.7伏特10位元低功率循環式類比數位轉換器
A 0.7-V 10-bit Ultra-low Power Cyclic A/D Converter with Digital Foreground Calibration
指導教授: 劉濱達
Liu, Bin-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 59
中文關鍵詞: 低電壓數位預先校準類比數位轉換器低功率
外文關鍵詞: low power, digital foreground calibration, analog-to-digital converter, low voltage
相關次數: 點閱:113下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程技術的演進,各種大型的生物醫學器材也逐漸的縮小化,甚至更進一步地整合成植入式生醫晶片,針對這方面的應用需求,具有低電壓和低功率消耗能力的積體電路已經成為積體電路設計上的主流與挑戰。
    本論文中,我們實現一個應用於植入式生醫感測器的低電壓、低功率消耗的類比數位轉換器,採用可以提供具有可靠性解決方案的切換式運算放大器技術,使得電路不需要特殊製程和增加時脈訊號電壓的電路,能夠在低供應電壓的條件下正常地操作。此外,我們設計運算放大器及比較器的所有MOS元件都操作在弱反轉區,大大地降低了電路的功率消耗,更使用數位預先校準技術,校準類比數位轉換器的輸出,提高輸出結果的精確度。
    我們使用台積電0.13微米一層多晶矽八層金屬之互補式金氧半導體製程,實現一個供應電壓為0.7伏特、輸出10位元的數位訊號、取樣頻率為1千赫茲、低功率消耗且能自我校準的循環式類比數位轉換器。在使用校準電路的情形下,即使採用一低增益(53 dB)但線性的運算放大器,仍可得到一訊號對於雜訊及諧波失真比高達58.86 dB 的循環式類比數位轉換器。整個電路不包含數位校準的功率消耗為2 μW。

    This paper describes a low supply voltage and ultra-low power integrated analog-to-digital converter (ADC) for implantable bio-medical sensor applications. Through biasing the opamps and comparators in the weak-inversion region and adopting switched-opamp technique into the ADC architecture allows for the circuit operation with low supply voltage and ultra-low power consumption. A 0.7-V 10-bit 1 ksample/s ultra-low power cyclic analog-to-digital converter (ADC) is proposed, which is itself calibrated in the foreground and implemented with 0.13μm TSMC 1P8M CMOS technology. The calibration overcomes the circuit non-idealities caused by capacitor mismatch and finite operational amplifier (opamp) gain in the cyclic ADC. With the digital foreground calibration, the peak signal-to-noise ratio is 58.86 dB with a low gain (53 dB) but linear opamp. The total power dissipation is 2 μW not including the calibration circuit.

    Chapter 1 Introduction 1 1.1 Motivation and Goal 1 1.2 Thesis Organization 3 Chapter 2 Behavioral Model and Design Techniques of Low-Voltage Cyclic Analog-to-Digital Converter 4 2.1 Behavioral Model of Cyclic ADC with Non-idealities 5 2.1.1 The Behavioral Models of Key Building Blocks of Cyclic ADC 5 2.1.2 Non-idealities in Cyclic ADCs 10 2.1.3 Complete Behavioral Model of Cyclic ADC 21 2.2 Low-Voltage Switched-Capacitor Techniques 22 2.2.1 Voltage Multiplier 24 2.2.2 Bootstrapped Switch 26 2.2.3 Low-Threshold Voltage Process 27 2.2.4 Switched Opamp Technique 28 2.3 Summary 29 Chapter 3 The Implementation of Proposed Low-Voltage Cyclic ADC 30 3.1 Low-Voltage Sample-and-Hold Circuit 31 3.1.1 Implementation of Bootstrapped Switch 32 3.1.2 Simulation Results of Sample-and-Hold Circuit 33 3.2 Low-Voltage Multiplying Digital-to-Analog Converter 35 3.2.1 Conventional MDAC of 1.5-Bit/Stage ADC Architecture 35 3.2.2 Low-Voltage MDAC 36 3.3 Low-Voltage Ultra-Low Power Switched Opamp 38 3.4 Summary 41 Chapter 4 Foreground Calibration and Simulation Results 42 4.1 Calibration of Cyclic ADC 43 4.1.1 Digital-Calibration Algorithm 43 4.1.2 The Behavioral Model of Calibration Circuit 49 4.2 The Simulation Results of Low-Power Cyclic ADC 50 4.3 Summary 54 Chapter 5 Conclusions and Future Work 55 5.1 Conclusions 55 5.2 Future Work 56 References 57

    [1] B. Razavi, Data Conversion System Design. New York: IEEE Press, 1995.
    [2] A. Baschirotto, R. Castello, and F. Montecchi, “Design strategies for low-voltage SC circuits,” Electron. Lett., vol. 30, no. 5, pp. 378–380, Mar. 1994.
    [3] J. Crols, M. Steyaert, and W. Sansen, “Switched opamp: An approach to realize full CMOS SC circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, pp. 936–942, Aug. 1994.
    [4] A. Baschirotto and R. Castello, “A 1 V 1.8MHZ MOS switched-opamp SC filter with rail-to-rail output swing,” in Proc. ISSCC Conf., San Francisco, CA, 1997, pp. 58–59.
    [5] V. Peluso, P. Vancorenland, M. Stayaert, and W. Sansen, “900mVdifferential class AB OTA for switched opamp applications,” Electron. Lett., vol. 33, no. 17, pp. 1455–1456, Aug. 1997.
    [6] G. Ferri, A. Costa, and A. Baschirotto, “A 1.2 V rail-to-rail switched buffer,” in Proc. ICECS, Lisboa, Portugal, Sept. 1998, pp. 45–48.
    [7] G. Ferri and A. Baschirotto, “Low-voltage rail-to-rail switched buffer topologies,” Int. J. Circuit Theory Appl., vol. 29, no. 4, pp. 413–422, July 2001.
    [8] A. Gerosa, A. Novo, and A. Neviani, “Low-power sensing and digitization of cardiac signals based on sigma-delta conversion,” in Proc. ISPLED, Rapallo, Italy, Sept. 2000, pp. 386–389.
    [9] J. Goes, J. C. Vital, and J. Franca, Systematic Design for Optimization of Pipelined ADCs. Boston, MA: Kluwer Academic, 2001.
    [10] A. Moscovici, High Speed A/D Converters understanding Data Converters through Spice. Boston, MA: Kluwer Academic, 2001.
    [11] F. Medeiro, B. Perez-Verdu, and et al., “Modeling opamp-induced harmonic distortion for switched-capacitor ΣΔ modulator design,” in Proc. IEEE Int. Symp. Circuits and Syst., vol. 5 London, U.K., May 1994, pp. 445-448.
    [12] P. Malcovati, et al., “Behavioral modeling of switched-capacitor sigma-delta modulators,” IEEE Trans. Circuits Syst.- I, vol. 50, pp.352-364, Mar 2003.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits. New York: McGraw-Hill, 2001.
    [14] U. Moon, G. Temes, E. Bidari, M. Keskin, L. Wu, J. Steensgaard, and F. Maloberti, “Switched-capacitor circuit techniques in submicron low-voltage CMOS,” in Proc. IEEE Int. Conf. VLSI CAD, pp. 349-358, Oct. 1999.
    [15] S. Rabii and B. A. Wooley, “A 1.8-V Digital-Audio ΣΔ Modulator in 0.8μm CMOS,” IEEE J. Solid-State Circuits, Vol. 32, Jun. 1997, pp. 783-796.
    [16] Y. Nakagome et al., “Experimental 1.5-V 64-Mb DRAM,” IEEE J. Solid-State Circuits, Vol. 26, Apr. 1991, pp. 465-472.
    [17] M. Dessouky and A. Kaiser, “Very Low-Voltage Digital-Audio ΣΔ Modulator with 88-dB Dynamic Range Using Local Switch Bootstrapping,” IEEE J. Solid-State Circuits, Vol. 36, March 2001, pp. 349-355.
    [18] M. Dessouky and A. Kaiser, “Input Switch Configuration Suitable for Rail-to-Rail Operation of Switch-Opamp Circuits,” Electron. Lett., Vol. 35, No. 1, 7th, January 1999, pp. 8-10.
    [19] J. Steensgaard, “Bootstrapped Low-Voltage Analog Switches,” in Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, May 1999, pp. 29-32.
    [20] J. Crols and M. Steyaert, “Switched-Opamp: An Approach to Realize Full CMOS Switched-Capacitor Circuits at Very Low Power Supply Voltages”, IEEE J. Solid-State Circuits, Vol. 29, Aug. 1994, pp. 936-942.
    [21] A. Baschirotto and R. Castello, “A 1-V 1.8-MHz CMOS Switched-Opamp SC Filter with Rail-to-Rail Output Swing,” IEEE J. Solid-State Circuits, Vol. 32, No. 12, Dec. 1997, pp. 1979-1986.
    [22] M. Waltari, Circuit techniques for Low-Voltage and High-Speed A/D Converters. Ph.D. dissertation, Helsinki University of Technology, Espoo, Finland, June 2002.
    [23] P. C. Yu and H. S. Lee, “A 2.5-V 12-b 5-MSample/s pipelined CMOS ADC,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1996, pp. 314-315.
    [24] G. Bonfini, A. S. Brogna, C. Garbossa, L. Colombini, M. Bacci, S. Chicca, F. Bigongiari, N. C. Guerrini, and G. Ferri, “ An Ultralow-Power Switched Opamp-Based 10-B Integrated ADC for Implantable Biomedical Applications, ” IEEE Trans. Circuits Syst. -I: Regular Papers, vol. 51, NO. 1, pp.174-178, Jan. 2004
    [25] V. S. L. Cheung and H. C. Luong, Design of Low-Voltage CMOS Switched-OPAMP Switched-Capacitor Systems. Boston, MA: Kluwer Academic, 2003.
    [26] M. Waltari and K. Halonen, “A Switched-Opamp with Fast Common Mode Feedback,” IEEE Conf. Electronics, Circuits and Syst., vol. 3, pp. 1523-1525, 1999.
    [27] H.-S. Lee, D. A. Hodges, and P. R. Gray, “A self-calibrating 15 bit CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 813–819, Dec. 1984.
    [28] O. E. Erdo˘gan, P. J. Hurst, and S. H. Lewis, “A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD,” IEEE J. Solid-State Circuits, vol. 34, pp. 1812–1820, Dec. 1999.
    [29] H. Ohara, H. X. Ngo, M. J. Armstrong, C. F. Rahim, and P. R. Gray, “ACMOS programmable self-calibrating 13-bit eight-channel data acquisition peripheral,” IEEE J. Solid-State Circuits, vol. SC-22, pp. 930–938,Dec. 1987.
    [30] H. -S. Lee, “A 12-b 600 ks/s digitally self-calibrated pipelined algorithmic ADC,” IEEE J. Solid-State Circuits, vol. 29, pp. 509–515, Apr. 1994.
    [31] A. Karanicolas, H.-S. Lee, and K. Bacrania, “A 15-b 1 Msample/s digitally self-calibrated pipeline ADC,” IEEE J. Solid-State Circuits, vol.28, pp. 1207–1215, Dec. 1993.
    [32] B. Widrow and S. D. Stearns, Adaptive Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1985.
    [33] X. Wang, P. J. Hurst, and S. H. Lewis, “A 12-bit 20 Msample/s pipelined analog-to-digital converter with nested digital background calibration,” IEEE J. Solid-State Circuits, vol. 39, pp. 1799–1808, Nov. 2004.

    下載圖示 校內:2009-08-24公開
    校外:2011-08-24公開
    QR CODE