簡易檢索 / 詳目顯示

研究生: 邱德維
Chiu, Te-Wei
論文名稱: 多測站日降雨量繁衍模式之研究
Multi-site weather generators for daily precipitation
指導教授: 游保杉
Yu, Pao-Shan
學位類別: 碩士
Master
系所名稱: 工學院 - 水利及海洋工程學系
Department of Hydraulic & Ocean Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 102
中文關鍵詞: Richardson – typek鄰近法氣候繁衍
外文關鍵詞: Richardson – type, k-NN, Climate generate
相關次數: 點閱:56下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氣候繁衍模式常用來將月雨量進行時間降尺度到日雨量序列之重要工具之一。本文使用了三種不同的氣候繁衍模式分別為,Richardson - type、k-NN(all data base)本文稱為k鄰近法_全資料法以及k-NN(moving window)本文稱為k鄰近法_移動視窗法,針對日降雨量進行日雨量氣候繁衍,本研究選取了石門、曾文水庫兩個集水區,共15個雨量測站。各測站皆使用三種不同的繁衍模式繁衍30組與觀測年相同長度之資料。然後針對所有繁衍資料進行分析,在本文中共分成四大類分析,分別為降雨量分析、乾濕日分析、日暴雨分析以及降雨空間相關性分析。大致上k鄰近法_全資料和k鄰近法_移動視窗均較Richardson – type法為佳,尤其是在空間相關性分析上更能維持降雨之統計特性,而分析結果顯示k鄰近法_移動視窗較其他模式適合於本研究區域,因此最後選用k鄰近法_移動視窗法來做為日雨量氣候繁衍模式。
    最後利用k鄰近法_移動視窗來進行情境模擬,透過IPCC所設定的兩種情境,透過繁衍結果以討論未來於研究地區降雨特性,在不同情境下可能出現不同的改變。結果顯示,k鄰近法_移動視窗繁衍之降雨量改變量受各月降雨量改變比值之影響大,而曾文水庫濕季降雨量改變比值大,因此一日暴雨量增加且濕季之降雨量有明顯的增加,石門水庫則改變不明顯,其中k鄰近法_移動視窗繁衍降雨日數之機制,受改變降雨量的影響小,因此兩地區之濕日數改變量皆不顯著。

    Climate generators are the important tools for time downscaling generally. The approaches considered include Richardson – type, k-NN(all data base) and k-NN(moving window) and the study area are Shih – Men catchment area and Tseng – Weng catchment area, a total of 15 rainfall gauge stations. The three different models generate 30 sets of observed data for processing analysis. The analysis are divided into four different parts, which are rainfall analysis, dry and wet day analysis, daily storm events analysis and rainfall spatial correlation analysis. In general, k-NN(all data base) and k-NN(moving window) are better than Richardson – type, especially these two models can present great result in rainfall spatial correlation analysis. The analysis results showed that k-NN(moving window) is the most proper model for our study area.
    By using two different sceniros by IPCC, the k-NN(moving window) generates 30 sets climate data for discussing future rainfall character in study area. Our results indicate that, monthly rainfall change ratio have great effect to generate rainfall amount. Because of the Tseng – Weng rainfall change ratio in wet season is greater than Shih – Men, Tseng – Weng catchment area get more daily storm events. However, through the k-NN(moving window), the total dry days or wet days in month have no obvious change by changing monthly rainfall change ratio.

    目錄 摘要 II Abstract III 誌 謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 第一章 緒論 1 1-1. 研究動機與目的 1 1-2. 文獻回顧 2 1-3. 本文組織架構 5 第二章 研究區域及資料介紹 8 2-1. 研究區域概述 8 2-2. 地文特性 8 2-3. 降雨特性 9 2-4. 測站資料 10 第三章 氣候繁衍模式理論 13 3-1. Richardson - type weather generator 13 3-1.1. 降雨發生與否 14 3-1.2. 降雨量 14 3-2. k鄰近法理論 16 3-2.1. k鄰近法_全資料 18 3-2.2. k鄰近法_移動視窗 18 第四章 模式應用及比較 19 4-1. 降雨量分析 19 4-1.1. 月降雨量分析 19 4-1.2. 日降雨量分析 22 4-2. 乾濕日分析 23 4-2.1. 月濕日分布分析 23 4-2.2. 最大連續乾、濕日分析 25 4-3. 日暴雨分析 28 4-3.1. 暴雨分析 29 4-3.2. 一、二日最大暴雨分析 32 4-4. 空間相關性分析 34 4-4.1. 相關係數分析 35 4-4.2. 降雨空間分布 37 4-5. 結果比較 39 第五章 氣候變遷情境下之氣候繁衍 41 5-1. 氣候變遷下日降雨量分析 43 5-2. 氣候變遷下一日暴雨分析 44 5-3. 氣候變遷下月降雨量分析 45 5-4. 氣候變遷下濕日分析 48 第六章 結論與建議 50 6-1. 結論 50 6-2. 建議 51 參考文獻 53 附錄A 模式應用比較結果圖 57

    參考文獻
    1. Bailey, N. T. J. (1964). The Elements of Stochastic Processes. John Wiley, New York.
    2. Bannayan, M., & Hoogenboom, G. (2008). Weather analogue: A tool for real-time prediction of daily weather data realizations based on a modified k-nearest neighbor approach. Environmental Modelling & Software, 23(6), 703-713.
    3. Busihand, J. J. B. a. T. A. (2003). Multi-site simulation of daily precipitation and temperature conditional on the atmospheric circulation. CLIMATE RESEARCH, 25.
    4. Chu, J.-L., Yu, P.-S. (in press). A study of the impact of climate change on local precipitation using statistical downscaling. Journal of Geophysical Research –Atmospheres.
    5. Chu, J. L., Kang, H. W., Tam, C. Y., Park, C. K., & Chen, C. T. (2008). Seasonal forecast for local precipitation over northern Taiwan using statistical downscaling. Journal of Geophysical Research-Atmospheres, 113(D12), -.
    6. Clark, M., Gangopadhyay, S., Hay, L., Rajagopalan, B., & Wilby, R. (2004). The Schaake shuffle: A method for reconstructing space-time variability in forecasted precipitation and temperature fields. Journal of Hydrometeorology, 5(1), 243-262.
    7. Clark, M. P., Gangopadhyay, S., Brandon, D., Werner, K., Hay, L., Rajagopalan, B., et al. (2004). A resampling procedure for generating conditioned daily weather sequences. Water Resources Research, 40(4), -.
    8. Dimri, A. P., Joshi, P., & Ganju, A. (2008). Precipitation forecast over western Himalayas using k-nearest neighbour method. International Journal of Climatology, 28(14), 1921-1931.
    9. Kilsby, C. G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., et al. (2007). A daily weather generator for use in climate change studies. Environmental Modelling & Software, 22(12), 1705-1719.
    10. Lall, B. R. a. U. (1999). A k–nearest-neighbor simulator for daily precipitation and other weather variables. WATER RESOURCES RESEARCH, 35(10).
    11. Lall, U., Sharma, A., (1996). A nearest neighbour bootstrap for time series resampling. Water Resources Research, 32(3), 14.
    12. Lall, U., Rajagopalan, B., & Tarboton, D. G. (1996). A nonparametric wet/dry spell model for resampling daily precipitation. Water Resources Research, 32(9), 2803-2823.
    13. Leander, R., & Buishand, T. A. (2009). A daily weather generator based on a two-stage resampling algorithm. Journal of Hydrology, 374(3-4), 185-195.
    14. McMahon, R. S. a. T. A. (2001). Stochastic generation of annual, monthly and daily climate data: A review. Hydrology and Earth System Sciences.
    15. Mehrotra, R., & Sharma, A. (2006). Conditional resampling of hydrologic time series using multiple predictor variables: A K-nearest neighbour approach. Advances in Water Resources, 29(7), 987-999.
    16. Mehrotra, R., & Sharma, A. (2007). Preserving low-frequency variability in generated daily rainfall sequences. Journal of Hydrology, 345(1-2), 102-120.
    17. Mehrotra, R., & Sharma, A. (2009). Evaluating spatio-temporal representations in daily rainfall sequences from three stochastic multi-site weather generation approaches. Advances in Water Resources, 32(6), 948-962.
    18. Mehrotra, R., Srikanthan, R., & Sharma, A. (2006). A comparison of three stochastic multi-site precipitation occurrence generators. Journal of Hydrology, 331(1-2), 280-292.
    19. R., M. D. (1992). Handbook of Hydrology. R. R. Donnelley & Sons Company.
    20. Racsko, P., Szeidl, L., & Semenov, M. (1991). A Serial Approach to Local Stochastic Weather Models. Ecological Modelling, 57(1-2), 27-41.
    21. Richardson, C. W. (1981). Stochastic Simulation of daily Precipitation, Temperature, and Solar-Radiation. Water Resources Research, 17(1), 182-190.
    22. Selker, J. S., and Haith, D. A. (1990). Development and testing of single-parameter precipitation distributions. Water Resources Research, 26(11), 7.
    23. Sharif, M., & Burn, D. H. (2006). Simulating climate change scenarios using an improved K-nearest neighbor model. Journal of Hydrology, 325(1-4), 179-196.
    24. Todorovic, P., and D. A. Woolhiser (1974). Stochastic model of daily rainfall. Proceedings of the Symposium on Statistical Hydrology, 1275, 23.
    25. Velghe, T., Troch, P.A., De Troch, F.P., Van de Velde, J. (1994). Evaluation of cluster-based rectangular pluses point process models for rainfall. Water Resources Research, 30, 10.
    26. Wallis, T. W. R., & Griffiths, J. F. (1995). An assessment of the weather generator (WXGEN) used in the erosion/productivity impact calculator (EPIC). [doi: DOI: 10.1016/0168-1923(94)02172-G]. Agricultural and Forest Meteorology, 73(1-2), 115-133.
    27. Wright, C. W. R. a. D. A. (1984). WGEN: A Model for Generating daily Weather Variables. United States Department of Agriculture Agriculture Research Service
    28. Yates, D., Gangopadhyay, S., Rajagopalan, B., & Strzepek, K. (2003). A technique for generating regional climate scenarios using a nearest-neighbor algorithm. Water Resources Research, 39(7), -.
    29. Young, K. C. (1994). A Multivariate Chain Model for Simulating Climatic Parameters from daily Data. Journal of Applied Meteorology, 33(6), 661-671.
    30. Zhang, X. C., & Garbrecht, J. D. (2003). Evaluation of CLIGEN precipitation parameters and their implication on WEPP runoff and erosion prediction. Transactions of the Asae, 46(2), 311-320.
    31. 永續發展研究室 氣候變遷育社情境與應用. 台灣大學生物環境系統工程學系.
    32. 吳至剛 (2000). 氣候變遷對高屏溪流域水資源衝擊之探討. 國立成功大學水利及海洋工程研究所碩士論文.
    33. 林昭遠 (2004). 以遙測技術推估集水區泥砂產量. 行政院農委員會水土保持局, 10.
    34. 楊文仁、范正成、楊智翔、黃效禹 (2007). CLIGEN氣候生成模式對台灣北部地區有效降雨模擬之適用性研究. 農業工程學報.
    35. 經濟部水利署 (2008). 臺灣水文年報.

    下載圖示 校內:立即公開
    校外:2011-08-18公開
    QR CODE