| 研究生: |
林建鴻 Lin, Jian-Hong |
|---|---|
| 論文名稱: |
因應轉子位置感測器故障之衛星反應輪馬達控制策略 A Control Strategy for Satellite Reaction Wheel Motor in Response to Rotor Position Sensor Failures |
| 指導教授: |
謝旻甫
Hsieh, Min-Fu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 霍爾位置感測器故障偵測 、無轉子位置感測器控制 、角度估測器 |
| 外文關鍵詞: | Hall Position Sensor Fault Detection, Sensorless Control, Rotor Angle Estimator |
| 相關次數: | 點閱:30 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在應對衛星反應輪馬達之轉子位置霍爾感測器訊號受到環境干擾而故障時,能夠即時切換角度估測模式,避免故障之轉子位置訊號影響馬達驅動,進而影響衛星之姿態控制。霍爾故障類型主要可分為三種:(1)霍爾向量變化順序錯誤;(2)零向量故障;(3)霍爾超前/落後故障,而傳統之霍爾故障偵測法僅針對訊號本身進行分析,因此不易即時發現故障,造成暫態電流突波、轉矩下降等問題,且多數文獻僅假設單次事件僅單一霍爾故障,無法因應環境干擾而同時雙霍爾失效的情形。
本文將霍爾感測器訊號結合向量追蹤觀測器作為主要角位置估測,並將該結果視為判斷感測器故障之參考,因此能夠更及時發現故障,其造成之最大估測誤差僅20°。觀測器估測模式主要應對健康狀態、單顆及雙顆霍爾故障情形;而全數霍爾故障時,將以無感測器控制法介入,達成任何霍爾故障訊號皆不影響反應輪馬達之運作。
This thesis aims to address the issue of the hall rotor position sensor signals of satellite reaction wheel motors being affected by environmental interference. It proposes an immediate switching mechanism for angle estimation modes when such faults occur, thereby preventing the faulty rotor position signals from impacting the motor drive and subsequently affecting the satellite's attitude control. The main types of hall sensor faults can be categorized into three: (1) hall vector sequence errors, (2) zero vector faults, and (3) Hall sensor lead/lag faults. Conventional hall fault detection methods only analyze the signals themselves, making it difficult to detect faults promptly, which can lead to issues like transient current spikes and torque drops. Additionally, most studies assume that only a single hall fault occurs at a time, failing to account for scenarios where dual hall failures happen simultaneously due to environmental interference.
In this thesis, the hall sensor signals are combined with a vector tracking observer as the primary method for angle position estimation, with the results being used as a reference for sensor fault detection. This approach enables more timely fault detection, with a maximum estimation error of only 20°. The observer estimation mode mainly handles scenarios of healthy states, single, and dual hall faults; in cases of total hall sensor failure, a sensorless control method is implemented to ensure that no hall fault signal affects the operation of the reaction wheel motor.
[1] N. S. Krishna, S. Gosavi, S. Singh, N. Saxena, N. Saxena, A. Kailaje, V. Datla, P. Shah, “Design and implementation of a reaction wheel system for CubeSats,” IEEE Aerospace Conference, Big Sky, MT, USA, 2018.
[2] K. Nithya, A. A. Balakrishnan and R. P. Praveen, “Sensorless control of brushless DC motor for low speed aerospace applications,” in Proceedings of International Conference on Circuits, Power and Computing Technologies (ICCPCT), Nagercoil, India, 2014.
[3] G. C. Fabio, G. D. Donato, L. D. Ferraro, O. Honorati, M. C. Harke and R. D. Lorenz, “AC brushless drive with low-resolution Hall-effect sensors for surface-mounted PM Machines,” IEEE Transactions on Industry Applications, vol. 42, no. 2, pp. 526-535, March-April. 2006.
[4] 林恒慶,基於霍爾感測之載具馬達弦波驅動暫態故障補償與容錯控制,國立台灣大學碩士論文,2022。
[5] 黃任翊,霍爾感測式直流無刷馬達驅動容錯控制,國立台灣大學碩士論文,2020。
[6] R. D. Lorenz and K. W. Van Patten, "High-resolution velocity estimation for all-digital, AC servo drives," IEEE Transactions on Industry Applications, vol. 27, no. 4, pp. 701-705, July-Aug. 1991.
[7] M. C. Harke, G. D. Donato, F. G. Capponi, T. R. Tesch and R. D. Lorenz, "Implementation issues and performance evaluation of sinusoidal, surface-mounted PM machine drives with hall-effect position sensors and a vector-tracking observer," IEEE Transactions on Industry Applications, vol. 44, no. 1, pp. 161-173, Jan.-Feb. 2008.
[8] L. Dong, Y. Huang, J. Jatskevich and J. Liu, "Improved fault-tolerant control for brushless permanent magnet motor drives with defective hall sensors," IEEE Transactions on Energy Conversion, vol. 31, no. 2, pp. 789-799, June 2016.
[9] G. Scelba, G. D. Donato, G. Scarcella, F. G. Capponi and F. Bonaccorso, "Fault-tolerant rotor position and velocity estimation using binary hall-effect sensors for low-cost vector control drives," IEEE Transactions on Industry Applications, vol. 50, no. 5, pp. 3403-3413, Sept.-Oct. 2014.
[10] L. Dong, J. Jatskevich, Y. Huang, M. Chapariha and J. Liu, "Fault diagnosis and signal reconstruction of hall sensors in brushless permanent magnet motor drives," IEEE Transactions on Energy Conversion, vol. 31, no. 1, pp. 118-131, March 2016.
[11] G. Scelba, G. De Donato, M. Pulvirenti, F. Giulii Capponi and G. Scarcella, "Hall-effect sensor fault detection, identification, and compensation in brushless DC drives," IEEE Transactions on Industry Applications, vol. 52, no. 2, pp. 1542-1554, March-April 2016.
[12] A. Tashakori and M. Ektesabi, "A simple fault tolerant control system for hall effect sensors failure of BLDC motor," in Proceedings of Conference on Industrial Electronics and Applications (ICIEA), Melbourne, VIC, Australia, 2013.
[13] 陳鴻棋、趙溢平、詹淳雅,單一霍爾位置回授之高速直流無刷馬達鎖相迴路控制,第四十四屆中華民國電力工程研討會暨第二十屆台灣電力電子研討會,2023年12月1-2日。
[14] 游子慶,具有追速起動功能之永磁同步馬達無轉軸位置感測器速度控制系統研製,國立台北科技大學論文,2017。
[15] K. Lee and J. L. Ha, “Evaluation of Back-EMF Estimators for Sensorless Control of Permanent Magnet Synchronous Motors. Journal of Power Electronics,” Journal of Power Electronics,” 12. 10.6113/JPE.2012.12.4.604, 2012.
[16] J. Hu and B. Wu, “New integration algorithms for estimating motor flux over a wide speed range,” IEEE Transactions on Power Electron., vol. 13, no. 5, pp. 969-977, Sept. 1998.
[17] C. Zhao, M. Tanaskovic, F. Percacci, S. Mariéthoz and P. Gnos, "Sensorless position estimation for slotless surface mounted permanent magnet synchronous motors in full speed range," IEEE Transactions on Power Electronics, vol. 34, no. 12, pp. 11566-11579, Dec. 2019
[18] T. Dong, M.F. Hsieh and P.H. Chen, “A Novel Robust Sensorless Technique for Field-Oriented Control Drive of Permanent Magnet Synchronous Motor,” IEEE Access, 2021.
[19] X. Song, J. Fang, B. Han and S. Zheng, "Adaptive compensation method for high-speed surface PMSM sensorless drives of EMF-based position estimation error," IEEE Transactions on Power Electronics, vol. 31, no. 2, pp. 1438-1449, Feb. 2016.
[20] Z. Wang, K. Lu and F. Blaabjerg, "A simple startup strategy based on current regulation for back-EMF-based sensorless control of PMSM," IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3817-3825, Aug. 2012.
[21] Z. M. Dalala, Y. Cho, J. S. Lai, "Enhanced vector tracking observer for rotor position estimation for PMSM drives with low resolution hall-effect position sensors," in Proceedings of International Electric Machines & Drives Conference, Chicago, IL, 2013, pp. 484-491,2013.
[22] 陳鴻棋、趙溢平、詹淳雅,霍爾元件回授之高速直流無刷馬達磁場導向控制,第四十四屆中華民國電力工程研討會暨第二十屆台灣電力電子研討會,2023年12月1-2日。
[23] I. Szalay, D. Fodor, K. Enisz and H. Medve, "Saliency model extension for sensorless initial position and polarity detection of permanent magnet synchronous motors," IEEE Access, vol. 9, pp. 168292-168314, 2021.
[24] I. Szalay, G. Kohlrusz and D. Fodor, "Modeling of slotless surface-mounted PM synchronous motor for sensorless applications," in Proceedings of IEEE International Electric Vehicle Conference (IEVC), Florence, Italy, 2014.
[25] X. Song, J. Fang and B. Han, "High-precision rotor position detection for high-speed surface PMSM drive based on linear hall-effect sensors," IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 4720-4731, July 2016.
[26] R.Setty, S.Wekhande and K.Chatterjee, “Comparison of high frequency signal injection techniques for rotor position estimation at low speed to standstill of PMSM,” in Proceedings of India International Conference on Power Electronics (IICPE), 2012.
[27] 卓泰延,高頻注入法應用於表貼式永磁同步馬達之無感測研究,國立中央大學碩士論文,2017。
[28] P.H. Jhou, C.W. Yang and C.M. Liaw, “A robust position sensorless wind interior permanent-magnet synchronous generator,” 第四十四屆中華民國電力工程研討會暨第二十屆台灣電力電子研討會,2023年12月1-2日。
[29] D. Liang, J. Li and R. Qu, "Sensorless control of permanent magnet synchronous machine based on second-order sliding-mode observer with online resistance estimation," IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 3672-3682, July-Aug. 2017.
[30] N. R. N. Idris and A. H. M. Yatim, "An improved stator flux estimation in steady-state operation for direct torque control of induction machines," IEEE Transactions on Industry Applications, vol. 38, no. 1, pp. 110-116, Jan.-Feb. 2002.
[31] G. Wang, M. Valla and J. Solsona, "Position sensorless permanent magnet synchronous machine drives—A Review," IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5830-5842, July 2020.
[32] C. M. Verrelli et al, " Speed sensor fault tolerant PMSM machines: from position-sensorless to sensorless control," IEEE Transactions on Industry Applications, vol. 55, no. 4, pp. 3946-3954, July-Aug. 2019.
[33] I. Boldea, M. C. Paicu and G. D. Andreescu, “Active flux concept for motion-sensorless snified AC drives,” IEEE Transactions on Power Electronics, vol. 23, no. 5, pp. 2612-2618, Sept. 2008.
[34] S. Bolognani, L. Tubiana and M. Zigliotto, “Extended Kalman filter tuning in sensorless PMSM drives,” IEEE Transactions on Industry Application., vol. 39, no. 6, pp. 1741-1747, Nov.-Dec. 2003.
[35] J. -H. Jang, S. -K. Sul, J. -I. Ha, K. Ide and M. Sawamura, “Sensorless drive of surface-mounted permanent-magnet motor by high-frequency signal injection based on magnetic saliency,” IEEE Transactions on Industry Applications, vol. 39, no. 4, pp. 1031-1039, July-Aug. 2003.
[36] Y. -D. Yoon, S. -K. Sul, S. Morimoto and K. Ide, “High bandwidth sensorless algorithm for AC machines based on square-wave type voltage injection,” in Proceedings of IEEE Energy Conversion Congress and Exposition, pp. 2123-2130, Sept. 2009.
[37] Y.-D. Yoon and S. -K. Sul, “Sensorless control for induction machines based on square-wave voltage injection,” IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3637-3645, July 2014.