簡易檢索 / 詳目顯示

研究生: 高誌暉
Kao, Chih-Hui
論文名稱: 利用登革病毒外套膜重組蛋白製造中和性單鏈抗體
Generation of dengue virus neutralization single chain fragments of variable region (scFv) using dengue virus recombinant envelope protein
指導教授: 葉才明
Yeh, Trai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 醫學檢驗生物技術學系
Department of Medical Laboratory Science and Biotechnology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 116
中文關鍵詞: 噬菌體表現登革病毒
外文關鍵詞: phage display, dengue virus
相關次數: 點閱:92下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 登革病毒 (DV) 分布於熱帶及亞熱帶區域,是一個由蚊子叮咬所傳播的病毒,造成的疾病包括輕微的登革熱 (dengue fever, DF) 及較嚴重的登革出血熱/登革休克症候群 (dengue hemorrhagic fever/dengue shock syndrome, DHF/DSS)。全球約有超過100個國家、將近一半的人口都在登革病毒的分布的區域內。登革病毒顆粒的表面是由90套膜蛋白 (envelope, E) 的雙聚體所組成, E蛋白是登革病毒最初與宿主細胞接觸的位置,並且E蛋白在病毒感染時的受器媒介胞吞作用 (receptor-mediated endocytosis) 中扮演重要角色。每個E蛋白皆含有三個區域 (domain),domain I是位於整個E蛋白的中央,domain II含有一段高度保留的融合胜肽 (fusion peptide),負責E蛋白的雙聚體化,domain III則是一個type-specific並與免疫球蛋白很像的區域,所以也被認為最有可能是受器結合以及具有中和能力抗原決定位的位置。然而,由於抗體依賴性增強作用 (antibody-dependent enhancement, ADE) 造成登革病毒會經由Fc receptor加強感染,到目前為止並沒有一個有效的疫苗可以預防,也沒有有效的藥物可以治療。為了避免ADE的問題,我們利用登革病毒以及E蛋白domain III (DEIII) 免疫小鼠並構築單鏈抗體 (single chain fragments of variable region, scFv) 基因庫,並尋找專一性結合至登革病毒並能中和登革病毒結合及感染的抗體。我們利用PEG沉澱以及蔗糖梯度離心的方式取得純化的登革病毒,以及由pET43.1a(+) vector及細菌表現蛋白系統構築並經Ni2+ column 純化所得到的DEIII蛋白免疫小鼠,經過四次的免疫後,我們可以在其血清中偵測到登革抗體的存在,隨著免疫的次數其效價也有明顯上升的情形,並以流式細胞儀偵測得知以登革病毒免疫小鼠所產生的抗體可以較有效的抑止登革病毒和細胞的結合。萃取免疫小鼠脾臟的RNA並反轉成cDNA,利用PCR建立單鏈抗體基因庫,經過數次的生物篩選後挑選出與登革病毒較高親和力的單一單鏈抗體。在我們的研究裡,總共挑選出了三個單鏈抗體,並利用流式細胞儀分析確認其皆有阻止登革病毒結合的能力,其中以抗登革病毒單鏈抗體5-38的效果為最好。

    Dengue virus (DV) is an important mosquito-borne pathogen causing dengue fever (DF), dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) in the tropical and sub-tropical region of the world. Nearly 50% of people in over 100 contries are at risk of DV infection. The surface of DV particle is covered with 90 envelope (E) protein homodimers which contacted with host cells first and were essential for viral infection through receptor-mediated endocytosis. Each monomer of E protein consists of three domains. E protein domain I (DEI) is the central domain located at the center of envelope protein. E protein domain II (DEII) is the dimerization domain contains highly conserved fusion peptide. E protein domain III (DEIII) is a type-specific and immunoglobin-like domain which is also considered a receptor binding and neutralization site. Until today, there is no effective vaccine or treatment against DV infection due to antibodies against DV may enhance DV infection through Fc receptor which is also known as antibody-dependent enhancement (ADE) effect. To avoid this ADE effect, we constructed single chain fragments of variable region (scFv) from DV and DEIII-immunized mice to search for DV specific antibody that can neutralize DV binding and infection. DV purified by polyethylene glycol (PEG) precipitation and sucrose gradient as well as recombinant DEIII expressed in E.coli Rosetta using pET43.1a(+) vector and purified by Ni2+ column were used for immunization. After four times of immunization, antibodies against DV and DEIII were found in both DV and DEIII immunized mice and DV-immunized mouse sera has higher blocking ability against DV binding as detected by flow cytometry. RNA from the spleens of DV-immunized mice was extracted and transcribed to cDNA to establish scFv library. After several rounds of bio-panning, single colonies that had higher affinity to DV were picked up. In our research, we picked up three single scFv that had high affinity to DV and confimed its blocking ability against DV binding by flow cytometry. Among these three scFv clones, anti-DV scFv 5-38 has higher blocking ability against DV binding.

    總目錄....................................I 中文摘要.................................V 英文摘要..................................VII 縮寫指引.................................IX 表目錄...................................X 圖目錄..................................XI 1.緒論...................................1 1.1登革病毒.................................1 1.1.1登革病毒概論..............................1 1.1.2登革病毒感染現況...........................4 1.1.3登革感染的臨床病徵及診斷......................5 1.1.4登革病毒致病機制...........................7 1.1.5登革病毒疫苗發展...........................10 1.2噬菌體表現(phagedisplay)之單鏈抗體(singlechainfragmentofvariableregion,scFv)..................11 1.2.1單株抗體發展及應用..........................11 1.2.2噬菌體...............................13 1.2.2.1噬菌體概論............................13 1.2.2.2噬菌體結構............................13 1.2.2.3噬菌體的生命周期(lifecycle).....................14 1.2.3噬菌體表現(phagedisplay)的發展....................17 1.2.3.1噬菌體表現系統的種類........................17 1.2.3.2噬菌體表現系統的應用........................18 2.實驗動機與目標.............................20 3.實驗材料與方法.............................21 3.1登革病毒之製備.............................21 3.1.1培養登革病毒............................21 3.1.2純化登革病毒(PEGprecipitationandsucrosegradient)...........21 3.1.3定量病毒效價............................22 3.1.4建立病毒結合至細胞的偵測方式....................23 3.2製造登革病毒EnvelopeproteindomainIII(DEIII)重組蛋白...........23 3.2.1構築登革病毒EnvelopeproteindomainIII(DEIII)重組蛋白..........23 3.2.1.1萃取病毒RNA...........................23 3.2.1.2反轉錄聚合酵素連鎖反應(RT-PCR).................24 3.2.1.3聚合酵素連鎖反應(PCR)......................25 3.2.1.4勝任細胞的製備..........................26 3.2.1.5質體構築(construction)及轉型(transformation)............27 3.2.2表現登革病毒EnvelopeproteindomainIII(DEIII)重組蛋白..........30 3.2.2.1重組蛋白的表現及純化........................30 3.2.2.2重組蛋白SDS-PAGE.........................32 3.2.2.3重組蛋白的西方墨點法分析......................32 3.2.3登革病毒DEIII重組蛋白功能分析....................33 3.2.3.1登革病毒DEIII重組蛋白之結合能力測試...............33 3.3DEIII及DV血清抗體製備........................34 3.3.1免疫小鼠及血清的製備.........................34 3.3.2血清抗體效價的測定..........................35 3.3.3血清抗體的功能測定..........................35 3.4製造抗登革病毒的單鏈抗體(scFv)....................36 3.4.1偵測DV及DEIII免疫血清抗體阻止病毒結合至細胞能力.........36 3.4.2構築單鏈抗體基因庫..........................37 3.4.2.1萃取脾臟RNA並反轉錄成cDNA....................37 3.4.2.2構築重鏈及輕鏈可變區........................38 3.4.2.3overlapPCR............................39 3.4.2.4pComb3Xvector及scFvDNA的製備..................40 3.4.2.5製備幫助噬菌體(helperphage)....................42 3.4.2.6單鏈抗體基因庫的製備........................43 3.4.3篩選單鏈抗體............................44 3.4.3.1單鏈抗體的生物篩選(bio-panning)...................44 3.4.3.2單一單鏈抗體之篩選.........................46 3.4.3.3單鏈抗體結合能力測試........................47 3.4.3.4單鏈抗體阻止病毒結合能力測試...................48 3.4.3.5單鏈抗體定序及序列比對......................49 4.結果...................................50 4.1登革病毒...............................50 4.1.1純化登革病毒............................50 4.1.2建立病毒結合至細胞的偵測方式....................50 4.2登革病毒DEIII重組蛋白..........................51 4.2.1構築登革病毒DEIII重組蛋白......................51 4.2.2表現及純化登革病毒DEIII重組蛋白...................51 4.2.3登革病毒DEIII重組蛋白功能分析....................52 4.3免疫小鼠及製造抗登革病毒的血清抗體.................52 4.4抗登革病毒的單鏈抗體(scFv).......................53 4.4.1偵測DV及DEIII免疫血清抗體阻止病毒結合至細胞能力.........53 4.4.2構築單鏈抗體............................53 4.4.3篩選單一單鏈抗體...........................54 4.4.4單鏈抗體中和能力測試.........................54 5.討論...................................56 5.1DEIII重組蛋白功能分析.........................56 5.2登革病毒感染的抗體反應........................57 5.3單鏈抗體...............................59 6.結論...................................64 7.引用文獻.................................65 8.表附錄..................................83 9.圖附錄..................................87 附錄一、試劑、buffer...........................105 附錄二、實驗耗材、試劑及抗體......................110 附錄三、儀器..............................115

    Allison, S. L., Schalich, J., Stiasny, K., Mandl, C. W., & Heinz, F. X. (2001). Mutational evidence for an internal fusion peptide in flavivirus envelope protein E. J Virol, 75(9), 4268-4275.
    An, J., Kimura-Kuroda, J., Hirabayashi, Y., & Yasui, K. (1999). Development of a novel mouse model for dengue virus infection. Virology, 263(1), 70-77.
    An, J., Zhou, D. S., Zhang, J. L., Morida, H., Wang, J. L., & Yasui, K. (2004). Dengue-specific CD8+ T cells have both protective and pathogenic roles in dengue virus infection. Immunol Lett, 95(2), 167-174.
    Ashour, J., Laurent-Rolle, M., Shi, P. Y., & Garcia-Sastre, A. (2009). NS5 of dengue virus mediates STAT2 binding and degradation. J Virol, 83(11), 5408-5418.
    Barbas III, C. F., Burton, D. R., Scott, J. K., Silverman, G. J., (2001) Phage display : a laboratory manual. Cold Spring Harbor Laboratory Press , Cold Spring Harbor, New York.
    Bauer, M., & Smith, G. P. (1988). Filamentous phage morphogenetic signal sequence and orientation of DNA in the virion and gene-V protein complex. Virology, 167(1), 166-175.
    Bernasconi, N. L., Traggiai, E., & Lanzavecchia, A. (2002). Maintenance of serological memory by polyclonal activation of human memory B cells. Science, 298(5601), 2199-2202.
    Bhamarapravati, N. (1989). Hemostatic defects in dengue hemorrhagic fever. Rev Infect Dis, 11 Suppl 4, S826-829.
    Bielefeldt-Ohmann, H., Beasley, D. W., Fitzpatrick, D. R., & Aaskov, J. G. (1997). Analysis of a recombinant dengue-2 virus-dengue-3 virus hybrid envelope protein expressed in a secretory baculovirus system. J Gen Virol, 78 ( Pt 11), 2723-2733.
    Blaney, J. E., Jr., Johnson, D. H., Manipon, G. G., Firestone, C. Y., Hanson, C. T., Murphy, B. R., et al. (2002). Genetic basis of attenuation of dengue virus type 4 small plaque mutants with restricted replication in suckling mice and in SCID mice transplanted with human liver cells. Virology, 300(1), 125-139.
    Boonnak, K., Slike, B. M., Burgess, T. H., Mason, R. M., Wu, S. J., Sun, P., et al. (2008). Role of dendritic cells in antibody-dependent enhancement of dengue virus infection. J Virol, 82(8), 3939-3951.
    Bryant, J. E., Calvert, A. E., Mesesan, K., Crabtree, M. B., Volpe, K. E., Silengo, S., et al. (2007). Glycosylation of the dengue 2 virus E protein at N67 is critical for virus growth in vitro but not for growth in intrathoracically inoculated Aedes aegypti mosquitoes. Virology, 366(2), 415-423.
    Chang, D. M., & Shaio, M. F. (1994). Production of interleukin-1 (IL-1) and IL-1 inhibitor by human monocytes exposed to dengue virus. J Infect Dis, 170(4), 811-817.
    Chareonsirisuthigul, T., Kalayanarooj, S., & Ubol, S. (2007). Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J Gen Virol, 88(Pt 2), 365-375.
    Chen, H. C., Hofman, F. M., Kung, J. T., Lin, Y. D., & Wu-Hsieh, B. A. (2007). Both virus and tumor necrosis factor alpha are critical for endothelium damage in a mouse model of dengue virus-induced hemorrhage. J Virol, 81(11), 5518-5526.
    Chen, H. C., Lai, S. Y., Sung, J. M., Lee, S. H., Lin, Y. C., Wang, W. K., et al. (2004). Lymphocyte activation and hepatic cellular infiltration in immunocompetent mice infected by dengue virus. J Med Virol, 73(3), 419-431.
    Chen, S. T., Lin, Y. L., Huang, M. T., Wu, M. F., Cheng, S. C., Lei, H. Y., et al. (2008). CLEC5A is critical for dengue-virus-induced lethal disease. Nature, 453(7195), 672-676.
    Chen, W. J., Chen, S. L., Chien, L. J., Chen, C. C., King, C. C., Harn, M. R., et al. (1996). Silent transmission of the dengue virus in southern Taiwan. Am J Trop Med Hyg, 55(1), 12-16.
    Chen, Y. C., Wang, S. Y., & King, C. C. (1999). Bacterial lipopolysaccharide inhibits dengue virus infection of primary human monocytes/macrophages by blockade of virus entry via a CD14-dependent mechanism. J Virol, 73(4), 2650-2657.
    Chua, J. J., Ng, M. M., & Chow, V. T. (2004). The non-structural 3 (NS3) protein of dengue virus type 2 interacts with human nuclear receptor binding protein and is associated with alterations in membrane structure. Virus Res, 102(2), 151-163.
    Chua, M. N., Molanida, R., de Guzman, M., & Laberiza, F. (1993). Prothrombin time and partial thromboplastin time as a predictor of bleeding in patients with dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health, 24 Suppl 1, 141-143.
    Chungue, E., Poli, L., Roche, C., Gestas, P., Glaziou, P., & Markoff, L. J. (1994). Correlation between detection of plasminogen cross-reactive antibodies and hemorrhage in dengue virus infection. J Infect Dis, 170(5), 1304-1307.
    Cidlinsky, K., Stenglein, C., von Glass, W., & Theobaldy, S. (1990). [The MRT diagnosis of acoustic neurinoma: arachnoidal adhesions as a differential diagnostic problem]. Rofo, 153(6), 726-727.
    Clackson, T., Lowman, H. B. (2004) Phage display : a practical approach. Oxford University Press, New York.
    Clarke, D. H., & Casals, J. (1958). Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Am J Trop Med Hyg, 7(5), 561-573.
    Click, E. M., & Webster, R. E. (1997). Filamentous phage infection: required interactions with the TolA protein. J Bacteriol, 179(20), 6464-6471.
    Crill, W. D., & Chang, G. J. (2004). Localization and characterization of flavivirus envelope glycoprotein cross-reactive epitopes. J Virol, 78(24), 13975-13986.
    Crill, W. D., Hughes, H. R., Delorey, M. J., & Chang, G. J. (2009). Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens. PLoS One, 4(4), e4991.
    Crill, W. D., & Roehrig, J. T. (2001). Monoclonal antibodies that bind to domain III of dengue virus E glycoprotein are the most efficient blockers of virus adsorption to Vero cells. J Virol, 75(16), 7769-7773.
    Crissman, J. W., & Smith, G. P. (1984). Gene-III protein of filamentous phages: evidence for a carboxyl-terminal domain with a role in morphogenesis. Virology, 132(2), 445-455.
    Das, D., Mongkolaungkoon, S., & Suresh, M. R. (2009). Super induction of dengue virus NS1 protein in E. coli. Protein Expr Purif, 66(1), 66-72.
    Deng, L. W., Malik, P., & Perham, R. N. (1999). Interaction of the globular domains of pIII protein of filamentous bacteriophage fd with the F-pilus of Escherichia coli. Virology, 253(2), 271-277.
    Diamond, M. S., Edgil, D., Roberts, T. G., Lu, B., & Harris, E. (2000). Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol, 74(17), 7814-7823.
    Diercks, F. H. (1959). Isolation of a type 2 dengue virus by use of hamster kidney cell cultures. Am J Trop Med Hyg, 8(4), 488-491.
    Falconar, A. K. (1997). The dengue virus nonstructural-1 protein (NS1) generates antibodies to common epitopes on human blood clotting, integrin/adhesin proteins and binds to human endothelial cells: potential implications in haemorrhagic fever pathogenesis. Arch Virol, 142(5), 897-916.
    Falconar, A. K. (2008). Monoclonal antibodies that bind to common epitopes on the dengue virus type 2 nonstructural-1 and envelope glycoproteins display weak neutralizing activity and differentiated responses to virulent strains: implications for pathogenesis and vaccines. Clin Vaccine Immunol, 15(3), 549-561.
    Falgout, B., Bray, M., Schlesinger, J. J., & Lai, C. J. (1990). Immunization of mice with recombinant vaccinia virus expressing authentic dengue virus nonstructural protein NS1 protects against lethal dengue virus encephalitis. J Virol, 64(9), 4356-4363.
    Falgout, B., Pethel, M., Zhang, Y. M., & Lai, C. J. (1991). Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol, 65(5), 2467-2475.
    Falkler, W. A., Jr., Diwan, A. R., & Halstead, S. B. (1973). Human antibody to dengue soluble complement-fixing (SCF) antigens. J Immunol, 111(6), 1804-1809.
    Fonseca, B. A., Pincus, S., Shope, R. E., Paoletti, E., & Mason, P. W. (1994). Recombinant vaccinia viruses co-expressing dengue-1 glycoproteins prM and E induce neutralizing antibodies in mice. Vaccine, 12(3), 279-285.
    Frost, L. S., Ippen-Ihler, K., & Skurray, R. A. (1994). Analysis of the sequence and gene products of the transfer region of the F sex factor. Microbiol Rev, 58(2), 162-210.
    Fulford, W., & Model, P. (1984). Gene X of bacteriophage f1 is required for phage DNA synthesis. Mutagenesis of in-frame overlapping genes. J Mol Biol, 178(2), 137-153.
    Gagnon, S. J., Ennis, F. A., & Rothman, A. L. (1999). Bystander target cell lysis and cytokine production by dengue virus-specific human CD4(+) cytotoxic T-lymphocyte clones. J Virol, 73(5), 3623-3629.
    Gentry, M. K., Henchal, E. A., McCown, J. M., Brandt, W. E., & Dalrymple, J. M. (1982). Identification of distinct antigenic determinants on dengue-2 virus using monoclonal antibodies. Am J Trop Med Hyg, 31(3 Pt 1), 548-555.
    Gorbalenya, A. E., Donchenko, A. P., Koonin, E. V., & Blinov, V. M. (1989). N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res, 17(10), 3889-3897.
    Gray, C. W. (1989). Three-dimensional structure of complexes of single-stranded DNA-binding proteins with DNA. IKe and fd gene 5 proteins form left-handed helices with single-stranded DNA. J Mol Biol, 208(1), 57-64.
    Gray, C. W., Brown, R. S., & Marvin, D. A. (1981). Adsorption complex of filamentous fd virus. J Mol Biol, 146(4), 621-627.
    Green, S., Vaughn, D. W., Kalayanarooj, S., Nimmannitya, S., Suntayakorn, S., Nisalak, A., et al. (1999). Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis, 179(4), 755-762.
    Gregson, A., & Edelman, R. (2003). Dengue virus infection. Pediatr Infect Dis J, 22(2), 179-181.
    Groen, J., Koraka, P., Velzing, J., Copra, C., & Osterhaus, A. D. (2000). Evaluation of six immunoassays for detection of dengue virus-specific immunoglobulin M and G antibodies. Clin Diagn Lab Immunol, 7(6), 867-871.
    Gromowski, G. D., Barrett, N. D., & Barrett, A. D. (2008). Characterization of dengue virus complex-specific neutralizing epitopes on envelope protein domain III of dengue 2 virus. J Virol, 82(17), 8828-8837.
    Guan, Y., Zhang, H., & Wang, A. H. (1995). Electrostatic potential distribution of the gene V protein from Ff phage facilitates cooperative DNA binding: a model of the GVP-ssDNA complex. Protein Sci, 4(2), 187-197.
    Gubler, D. J. (1998). Dengue and dengue hemorrhagic fever. Clin Microbiol Rev, 11(3), 480-496.
    Gubler, D. J., Reed, D., Rosen, L., & Hitchcock, J. R., Jr. (1978). Epidemiologic, clinical, and virologic observations on dengue in the Kingdom of Tonga. Am J Trop Med Hyg, 27(3), 581-589.
    Guzman, M. G., Kouri, G. P., Bravo, J., Calunga, M., Soler, M., Vazquez, S., et al. (1984). Dengue haemorrhagic fever in Cuba. I. Serological confirmation of clinical diagnosis. Trans R Soc Trop Med Hyg, 78(2), 235-238.
    Halstead, S. B. (1979). In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J Infect Dis, 140(4), 527-533.
    Halstead, S. B. (1988). Pathogenesis of dengue: challenges to molecular biology. Science, 239(4839), 476-481.
    Halstead, S. B., Nimmannitya, S., & Cohen, S. N. (1970). Observations related to pathogenesis of dengue hemorrhagic fever. IV. Relation of disease severity to antibody response and virus recovered. Yale J Biol Med, 42(5), 311-328.
    Halstead, S. B., & O'Rourke, E. J. (1977). Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody. J Exp Med, 146(1), 201-217.
    Halstead, S. B., Shotwell, H., & Casals, J. (1973a). Studies on the pathogenesis of dengue infection in monkeys. I. Clinical laboratory responses to primary infection. J Infect Dis, 128(1), 7-14.
    Halstead, S. B., Shotwell, H., & Casals, J. (1973b). Studies on the pathogenesis of dengue infection in monkeys. II. Clinical laboratory responses to heterologous infection. J Infect Dis, 128(1), 15-22.
    Halstead, S. B., Sukhavachana, P., & Nisalak, A. (1964). Assay of Mouse Adapted Dengue Viruses in Mammalian Cell Cultures by an Interference Method. Proc Soc Exp Biol Med, 115, 1062-1068.
    Halstead, S. B., Venkateshan, C. N., Gentry, M. K., & Larsen, L. K. (1984). Heterogeneity of infection enhancement of dengue 2 strains by monoclonal antibodies. J Immunol, 132(3), 1529-1532.
    Harn, M. R., Chiang, Y. L., Tian, M. J., Chang, Y. H., & Ko, Y. C. (1993). [The 1991 dengue epidemic in Kaohsiung City]. J Formos Med Assoc, 92 Suppl 1, S39-43.
    Hathirat, P., Isarangkura, P., Srichaikul, T., Suvatte, V., & Mitrakul, C. (1993). Abnormal hemostasis in dengue hemorrhagic fever. Southeast Asian J Trop Med Public Health, 24 Suppl 1, 80-85.
    Heinz, F. X. (1986). Epitope mapping of flavivirus glycoproteins. Adv Virus Res, 31, 103-168.
    Henchal, E. A., Henchal, L. S., & Schlesinger, J. J. (1988). Synergistic interactions of anti-NS1 monoclonal antibodies protect passively immunized mice from lethal challenge with dengue 2 virus. J Gen Virol, 69 ( Pt 8), 2101-2107.
    Henchal, E. A., McCown, J. M., Seguin, M. C., Gentry, M. K., & Brandt, W. E. (1983). Rapid identification of dengue virus isolates by using monoclonal antibodies in an indirect immunofluorescence assay. Am J Trop Med Hyg, 32(1), 164-169.
    Henchal, E. A., & Putnak, J. R. (1990). The dengue viruses. Clin Microbiol Rev, 3(4), 376-396.
    Herrera, M., Vazquez, S., & Fernandez, A. (1985). [Determination of complement fixation antibodies in patients with dengue hemorrhagic fever]. Rev Cubana Med Trop, 37(2), 195-202.
    Holliger, P., Riechmann, L., & Williams, R. L. (1999). Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. J Mol Biol, 288(4), 649-657.
    Hotta, H., Murakami, I., Miyasaki, K., Takeda, Y., Shirane, H., & Hotta, S. (1981). Inoculation of dengue virus into nude mice. J Gen Virol, 52(Pt 1), 71-76.
    Hotta, S., & Evans, C. A. (1956). Cultivation of mouse-adapted dengue virus (type 1) in rhesus monkey tissue culture. J Infect Dis, 98(1), 88-97.
    Huang, J. H., Wey, J. J., Sun, Y. C., Chin, C., Chien, L. J., & Wu, Y. C. (1999). Antibody responses to an immunodominant nonstructural 1 synthetic peptide in patients with dengue fever and dengue hemorrhagic fever. J Med Virol, 57(1), 1-8.
    Huang, K. J., Yang, Y. C., Lin, Y. S., Huang, J. H., Liu, H. S., Yeh, T. M., et al. (2006). The dual-specific binding of dengue virus and target cells for the antibody-dependent enhancement of dengue virus infection. J Immunol, 176(5), 2825-2832.
    Huang, T. H., & Morrison, S. L. (2006). A trimeric anti-HER2/neu ScFv and tumor necrosis factor-alpha fusion protein induces HER2/neu signaling and facilitates repair of injured epithelia. J Pharmacol Exp Ther, 316(3), 983-991.
    Huang, Y. H., Chang, B. I., Lei, H. Y., Liu, H. S., Liu, C. C., Wu, H. L., et al. (1997). Antibodies against dengue virus E protein peptide bind to human plasminogen and inhibit plasmin activity. Clin Exp Immunol, 110(1), 35-40.
    Huisman, W., Martina, B. E., Rimmelzwaan, G. F., Gruters, R. A., & Osterhaus, A. D. (2009). Vaccine-induced enhancement of viral infections. Vaccine, 27(4), 505-512.
    Hung, J. J., Hsieh, M. T., Young, M. J., Kao, C. L., King, C. C., & Chang, W. (2004). An external loop region of domain III of dengue virus type 2 envelope protein is involved in serotype-specific binding to mosquito but not mammalian cells. J Virol, 78(1), 378-388.
    Jacobs, M. G., Robinson, P. J., Bletchly, C., Mackenzie, J. M., & Young, P. R. (2000). Dengue virus nonstructural protein 1 is expressed in a glycosyl-phosphatidylinositol-linked form that is capable of signal transduction. FASEB J, 14(11), 1603-1610.
    Johansson, M., Brooks, A. J., Jans, D. A., & Vasudevan, S. G. (2001). A small region of the dengue virus-encoded RNA-dependent RNA polymerase, NS5, confers interaction with both the nuclear transport receptor importin-beta and the viral helicase, NS3. J Gen Virol, 82(Pt 4), 735-745.
    Johnson, A. J., & Roehrig, J. T. (1999). New mouse model for dengue virus vaccine testing. J Virol, 73(1), 783-786.
    Johnson, B. W., Russell, B. J., & Lanciotti, R. S. (2005). Serotype-specific detection of dengue viruses in a fourplex real-time reverse transcriptase PCR assay. J Clin Microbiol, 43(10), 4977-4983.
    Kalayanarooj, S., Vaughn, D. W., Nimmannitya, S., Green, S., Suntayakorn, S., Kunentrasai, N., et al. (1997). Early clinical and laboratory indicators of acute dengue illness. J Infect Dis, 176(2), 313-321.
    Ko, Y. C., Chen, J. W., & Chang, I. C. (1989). Attack rate of dengue-like illness among teachers in Kaohsiung City, 1988. Gaoxiong Yi Xue Ke Xue Za Zhi, 5(2), 129-131.
    Kohler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 256(5517), 495-497.
    Kremser, A., & Rasched, I. (1994). The adsorption protein of filamentous phage fd: assignment of its disulfide bridges and identification of the domain incorporated in the coat. Biochemistry, 33(46), 13954-13958.
    Kroschewski, H., Lim, S. P., Butcher, R. E., Yap, T. L., Lescar, J., Wright, P. J., et al. (2008). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem, 283(28), 19410-19421.
    Kuhn, R. J., Zhang, W., Rossmann, M. G., Pletnev, S. V., Corver, J., Lenches, E., et al. (2002). Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 108(5), 717-725.
    Kurane, I., Innis, B. L., Nisalak, A., Hoke, C., Nimmannitya, S., Meager, A., et al. (1989). Human T cell responses to dengue virus antigens. Proliferative responses and interferon gamma production. J Clin Invest, 83(2), 506-513.
    Kurane, I., Meager, A., & Ennis, F. A. (1989). Dengue virus-specific human T cell clones. Serotype crossreactive proliferation, interferon gamma production, and cytotoxic activity. J Exp Med, 170(3), 763-775.
    Lai, C. Y., Tsai, W. Y., Lin, S. R., Kao, C. L., Hu, H. P., King, C. C., et al. (2008a). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II, J Virol (2008/05/02 ed., Vol. 82, pp. 6631-6643).
    Lai, C. Y., Tsai, W. Y., Lin, S. R., Kao, C. L., Hu, H. P., King, C. C., et al. (2008b). Antibodies to envelope glycoprotein of dengue virus during the natural course of infection are predominantly cross-reactive and recognize epitopes containing highly conserved residues at the fusion loop of domain II. J Virol, 82(13), 6631-6643.
    Lazzaroni, J. C., Germon, P., Ray, M. C., & Vianney, A. (1999). The Tol proteins of Escherichia coli and their involvement in the uptake of biomolecules and outer membrane stability. FEMS Microbiol Lett, 177(2), 191-197.
    Lee, J. M., Crooks, A. J., & Stephenson, J. R. (1989). The synthesis and maturation of a non-structural extracellular antigen from tick-borne encephalitis virus and its relationship to the intracellular NS1 protein. J Gen Virol, 70 ( Pt 2), 335-343.
    Lei, H. Y., Yeh, T. M., Liu, H. S., Lin, Y. S., Chen, S. H., & Liu, C. C. (2001). Immunopathogenesis of dengue virus infection. J Biomed Sci, 8(5), 377-388.
    Leitmeyer, K. C., Vaughn, D. W., Watts, D. M., Salas, R., Villalobos, I., de, C., et al. (1999). Dengue virus structural differences that correlate with pathogenesis. J Virol, 73(6), 4738-4747.
    Libraty, D. H., Endy, T. P., Houng, H. S., Green, S., Kalayanarooj, S., Suntayakorn, S., et al. (2002). Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis, 185(9), 1213-1221. Lim, S. P., Wen, D., Yap, T. L., Yan, C. K., Lescar, J., & Vasudevan, S. G. (2008). A scintillation proximity assay for dengue virus NS5 2'-O-methyltransferase-kinetic and inhibition analyses. Antiviral Res, 80(3), 360-369.
    Lin, C. F., Chiu, S. C., Hsiao, Y. L., Wan, S. W., Lei, H. Y., Shiau, A. L., et al. (2005). Expression of cytokine, chemokine, and adhesion molecules during endothelial cell activation induced by antibodies against dengue virus nonstructural protein 1. J Immunol, 174(1), 395-403.
    Lin, C. F., Lei, H. Y., Liu, C. C., Liu, H. S., Yeh, T. M., Wang, S. T., et al. (2001). Generation of IgM anti-platelet autoantibody in dengue patients. J Med Virol, 63(2), 143-149.
    Lin, C. F., Lei, H. Y., Shiau, A. L., Liu, C. C., Liu, H. S., Yeh, T. M., et al. (2003). Antibodies from dengue patient sera cross-react with endothelial cells and induce damage. J Med Virol, 69(1), 82-90.
    Lin, C. F., Lei, H. Y., Shiau, A. L., Liu, H. S., Yeh, T. M., Chen, S. H., et al. (2002). Endothelial cell apoptosis induced by antibodies against dengue virus nonstructural protein 1 via production of nitric oxide. J Immunol, 169(2), 657-664.
    Lin, Y. L., Lei, H. Y., Lin, Y. S., Yeh, T. M., Chen, S. H., & Liu, H. S. (2002). Heparin inhibits dengue-2 virus infection of five human liver cell lines. Antiviral Res, 56(1), 93-96.
    Lin, Y. L., Liao, C. L., Chen, L. K., Yeh, C. T., Liu, C. I., Ma, S. H., et al. (1998). Study of Dengue virus infection in SCID mice engrafted with human K562 cells. J Virol, 72(12), 9729-9737.
    Lin, Y. S., Lin, C. F., Lei, H. Y., Liu, H. S., Yeh, T. M., Chen, S. H., et al. (2004). Antibody-mediated endothelial cell damage via nitric oxide. Curr Pharm Des, 10(2), 213-221.
    Lisova, O., Hardy, F., Petit, V., & Bedouelle, H. (2007). Mapping to completeness and transplantation of a group-specific, discontinuous, neutralizing epitope in the envelope protein of dengue virus. J Gen Virol, 88(Pt 9), 2387-2397.
    Littaua, R., Kurane, I., & Ennis, F. A. (1990). Human IgG Fc receptor II mediates antibody-dependent enhancement of dengue virus infection. J Immunol, 144(8), 3183-3186.
    Liu, F., Fang, C., Ye, X., Lu, Q., Yu, D. H., Zhang, W. W., et al. (2009). Anti-4-1BB scFv immunogene therapy and low dose cyclophosphamide exhibit a synergistic antitumor effect in established murine lung tumors. Cancer Biol Ther, 8(8), 707-713.
    Lopez, J., & Webster, R. E. (1983). Morphogenesis of filamentous bacteriophage f1: orientation of extrusion and production of polyphage. Virology, 127(1), 177-193.
    Lopez, J., & Webster, R. E. (1985). Assembly site of bacteriophage f1 corresponds to adhesion zones between the inner and outer membranes of the host cell. J Bacteriol, 163(3), 1270-1274.
    Lozach, P. Y., Burleigh, L., Staropoli, I., Navarro-Sanchez, E., Harriague, J., Virelizier, J. L., et al. (2005). Dendritic cell-specific intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN)-mediated enhancement of dengue virus infection is independent of DC-SIGN internalization signals. J Biol Chem, 280(25), 23698-23708.
    Lubkowski, J., Hennecke, F., Pluckthun, A., & Wlodawer, A. (1998). The structural basis of phage display elucidated by the crystal structure of the N-terminal domains of g3p. Nat Struct Biol, 5(2), 140-147.
    Mandl, C. W., Guirakhoo, F., Holzmann, H., Heinz, F. X., & Kunz, C. (1989). Antigenic structure of the flavivirus envelope protein E at the molecular level, using tick-borne encephalitis virus as a model. J Virol, 63(2), 564-571.
    Mangada, M. N., & Igarashi, A. (1998). Molecular and in vitro analysis of eight dengue type 2 viruses isolated from patients exhibiting different disease severities. Virology, 244(2), 458-466.
    Marasco, W. A., & Sui, J. (2007). The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol, 25(12), 1421-1434.
    Markoff, L. J., Innis, B. L., Houghten, R., & Henchal, L. S. (1991). Development of cross-reactive antibodies to plasminogen during the immune response to dengue virus infection. J Infect Dis, 164(2), 294-301.
    Mazzon, M., Jones, M., Davidson, A., Chain, B., & Jacobs, M. (2009). Dengue virus NS5 inhibits interferon-alpha signaling by blocking signal transducer and activator of transcription 2 phosphorylation. J Infect Dis, 200(8), 1261-1270.
    Men, R. H., Bray, M., & Lai, C. J. (1991). Carboxy-terminally truncated dengue virus envelope glycoproteins expressed on the cell surface and secreted extracellularly exhibit increased immunogenicity in mice. J Virol, 65(3), 1400-1407.
    Miller, J. L., de Wet, B. J., Martinez-Pomares, L., Radcliffe, C. M., Dwek, R. A., Rudd, P. M., et al. (2008). The mannose receptor mediates dengue virus infection of macrophages. PLoS Pathog, 4(2), e17.
    Modis, Y., Ogata, S., Clements, D., & Harrison, S. C. (2003). A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc Natl Acad Sci U S A, 100(12), 6986-6991.
    Mondotte, J. A., Lozach, P. Y., Amara, A., & Gamarnik, A. V. (2007). Essential role of dengue virus envelope protein N glycosylation at asparagine-67 during viral propagation. J Virol, 81(13), 7136-7148.
    Munoz-Jordan, J. L., Laurent-Rolle, M., Ashour, J., Martinez-Sobrido, L., Ashok, M., Lipkin, W. I., et al. (2005). Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol, 79(13), 8004-8013.
    Munoz-Jordan, J. L., Sanchez-Burgos, G. G., Laurent-Rolle, M., & Garcia-Sastre, A. (2003). Inhibition of interferon signaling by dengue virus. Proc Natl Acad Sci U S A, 100(24), 14333-14338.
    Navarro-Sanchez, E., Altmeyer, R., Amara, A., Schwartz, O., Fieschi, F., Virelizier, J. L., et al. (2003). Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep, 4(7), 723-728.
    Nedwin, G. E., Svedersky, L. P., Bringman, T. S., Palladino, M. A., Jr., & Goeddel, D. V. (1985). Effect of interleukin 2, interferon-gamma, and mitogens on the production of tumor necrosis factors alpha and beta. J Immunol, 135(4), 2492-2497.
    Ogawa, K., Miki, M., Hirata, M., Funahara, Y., & Kitaguchi, H. (1985). Plasminogen activator activity of cultured endothelial cells derived from canine coronary vessel and human umbilical artery and vein. Thromb Res, 37(3), 411-422.
    Olah, G. A., Gray, D. M., Gray, C. W., Kergil, D. L., Sosnick, T. R., Mark, B. L., et al. (1995). Structures of fd gene 5 protein.nucleic acid complexes: a combined solution scattering and electron microscopy study. J Mol Biol, 249(3), 576-594.
    Paes, M. V., Pinhao, A. T., Barreto, D. F., Costa, S. M., Oliveira, M. P., Nogueira, A. C., et al. (2005). Liver injury and viremia in mice infected with dengue-2 virus. Virology, 338(2), 236-246.
    Parida, M., Horioke, K., Ishida, H., Dash, P. K., Saxena, P., Jana, A. M., et al. (2005). Rapid detection and differentiation of dengue virus serotypes by a real-time reverse transcription-loop-mediated isothermal amplification assay. J Clin Microbiol, 43(6), 2895-2903.
    Petersen, G., Song, D., Hugle-Dorr, B., Oldenburg, I., & Bautz, E. K. (1995). Mapping of linear epitopes recognized by monoclonal antibodies with gene-fragment phage display libraries. Mol Gen Genet, 249(4), 425-431.
    Pokidysheva, E., Zhang, Y., Battisti, A. J., Bator-Kelly, C. M., Chipman, P. R., Xiao, C., et al. (2006). Cryo-EM reconstruction of dengue virus in complex with the carbohydrate recognition domain of DC-SIGN. Cell, 124(3), 485-493.
    Preugschat, F., Lenches, E. M., & Strauss, J. H. (1991). Flavivirus enzyme-substrate interactions studied with chimeric proteinases: identification of an intragenic locus important for substrate recognition. J Virol, 65(9), 4749-4758.
    Preugschat, F., Yao, C. W., & Strauss, J. H. (1990). In vitro processing of dengue virus type 2 nonstructural proteins NS2A, NS2B, and NS3. J Virol, 64(9), 4364-4374.
    Rakonjac, J., Feng, J., & Model, P. (1999). Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol, 289(5), 1253-1265.
    Randolph, V. B., Winkler, G., & Stollar, V. (1990). Acidotropic amines inhibit proteolytic processing of flavivirus prM protein. Virology, 174(2), 450-458.
    Raut, C. G., Deolankar, R. P., Kolhapure, R. M., & Goverdhan, M. K. (1996). Susceptibility of laboratory-bred rodents to the experimental infection with dengue virus type 2. Acta Virol, 40(3), 143-146.
    Reichelt, P., Schwarz, C., & Donzeau, M. (2006). Single step protocol to purify recombinant proteins with low endotoxin contents. Protein Expr Purif, 46(2), 483-488.
    Rey, F. A., Heinz, F. X., Mandl, C., Kunz, C., & Harrison, S. C. (1995). The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature, 375(6529), 291-298.
    Riechmann, L., & Holliger, P. (1997). The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. Cell, 90(2), 351-360.
    Rigau-Perez, J. G. (1998). The early use of break-bone fever (Quebranta huesos, 1771) and dengue (1801) in Spanish. Am J Trop Med Hyg, 59(2), 272-274.
    Roehrig, J. T. (2003). Antigenic structure of flavivirus proteins. Adv Virus Res, 59, 141-175.
    Roehrig, J. T., Bolin, R. A., & Kelly, R. G. (1998). Monoclonal antibody mapping of the envelope glycoprotein of the dengue 2 virus, Jamaica. Virology, 246(2), 317-328.
    Rosen, L. (1977). The Emperor's New Clothes revisited, or reflections on the pathogenesis of dengue hemorrhagic fever. Am J Trop Med Hyg, 26(3), 337-343.
    Rothman, A. L., & Ennis, F. A. (1999). Immunopathogenesis of Dengue hemorrhagic fever. Virology, 257(1), 1-6.
    Russel, M., & Model, P. (1988). Sequence of thioredoxin reductase from Escherichia coli. Relationship to other flavoprotein disulfide oxidoreductases. J Biol Chem, 263(18), 9015-9019.
    Russel, M., & Model, P. (1989). Genetic analysis of the filamentous bacteriophage packaging signal and of the proteins that interact with it. J Virol, 63(8), 3284-3295.
    Russel, M., Whirlow, H., Sun, T. P., & Webster, R. E. (1988). Low-frequency infection of F- bacteria by transducing particles of filamentous bacteriophages. J Bacteriol, 170(11), 5312-5316.
    Schlesinger, J. J., Brandriss, M. W., & Walsh, E. E. (1987). Protection of mice against dengue 2 virus encephalitis by immunization with the dengue 2 virus non-structural glycoprotein NS1. J Gen Virol, 68 ( Pt 3), 853-857.
    Selvarasu, S., Kim, D. Y., Karimi, I. A., & Lee, D. Y. (2010). Combined data preprocessing and multivariate statistical analysis characterizes fed-batch culture of mouse hybridoma cells for rational medium design. J Biotechnol.
    Shresta, S., Kyle, J. L., Robert Beatty, P., & Harris, E. (2004). Early activation of natural killer and B cells in response to primary dengue virus infection in A/J mice. Virology, 319(2), 262-273.
    Shresta, S., Sharar, K. L., Prigozhin, D. M., Beatty, P. R., & Harris, E. (2006). Murine model for dengue virus-induced lethal disease with increased vascular permeability. J Virol, 80(20), 10208-10217.
    Shu, P. Y., Chang, S. F., Kuo, Y. C., Yueh, Y. Y., Chien, L. J., Sue, C. L., et al. (2003). Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus. J Clin Microbiol, 41(6), 2408-2416.
    Skinner, M. M., Zhang, H., Leschnitzer, D. H., Guan, Y., Bellamy, H., Sweet, R. M., et al. (1994). Structure of the gene V protein of bacteriophage f1 determined by multiwavelength x-ray diffraction on the selenomethionyl protein. Proc Natl Acad Sci U S A, 91(6), 2071-2075.
    Specthrie, L., Bullitt, E., Horiuchi, K., Model, P., Russel, M., & Makowski, L. (1992). Construction of a microphage variant of filamentous bacteriophage. J Mol Biol, 228(3), 720-724.
    Staropoli, I., Frenkiel, M. P., Megret, F., & Deubel, V. (1997). Affinity-purified dengue-2 virus envelope glycoprotein induces neutralizing antibodies and protective immunity in mice. Vaccine, 15(17-18), 1946-1954.
    Stephen, C. W., & Lane, D. P. (1992). Mutant conformation of p53. Precise epitope mapping using a filamentous phage epitope library. J Mol Biol, 225(3), 577-583.
    Sukupolvi-Petty, S., Austin, S. K., Purtha, W. E., Oliphant, T., Nybakken, G. E., Schlesinger, J. J., et al. (2007). Type- and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J Virol, 81(23), 12816-12826.
    Sun, T. P., & Webster, R. E. (1987). Nucleotide sequence of a gene cluster involved in entry of E colicins and single-stranded DNA of infecting filamentous bacteriophages into Escherichia coli. J Bacteriol, 169(6), 2667-2674.
    Tan, B. H., Fu, J., Sugrue, R. J., Yap, E. H., Chan, Y. C., & Tan, Y. H. (1996). Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli exhibits RNA-dependent RNA polymerase activity. Virology, 216(2), 317-325.
    Tassaneetrithep, B., Burgess, T. H., Granelli-Piperno, A., Trumpfheller, C., Finke, J., Sun, W., et al. (2003). DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J Exp Med, 197(7), 823-829.
    Thein, S., Aung, M. M., Shwe, T. N., Aye, M., Zaw, A., Aye, K., et al. (1997). Risk factors in dengue shock syndrome. Am J Trop Med Hyg, 56(5), 566-572.
    Vaughn, D. W., Green, S., Kalayanarooj, S., Innis, B. L., Nimmannitya, S., Suntayakorn, S., et al. (2000). Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis, 181(1), 2-9.
    Vaughn, D. W., Green, S., Kalayanarooj, S., Innis, B. L., Nimmannitya, S., Suntayakorn, S., et al. (1997). Dengue in the early febrile phase: viremia and antibody responses. J Infect Dis, 176(2), 322-330.
    Velzing, J., Groen, J., Drouet, M. T., van Amerongen, G., Copra, C., Osterhaus, A. D., et al. (1999). Induction of protective immunity against Dengue virus type 2: comparison of candidate live attenuated and recombinant vaccines. Vaccine, 17(11-12), 1312-1320.
    Wang, C., Zhao, Z., Niu, M., Zhang, C., Cheng, X., & Chen, P. (2010). [Expression of bursin receptor on membranes of hybridoma cell and identification of binding peptide of bursin from 12-merrandom phage display peptide library]. Wei Sheng Wu Xue Bao, 50(2), 270-277.
    Wang, L. F., Du Plessis, D. H., White, J. R., Hyatt, A. D., & Eaton, B. T. (1995). Use of a gene-targeted phage display random epitope library to map an antigenic determinant on the bluetongue virus outer capsid protein VP5. J Immunol Methods, 178(1), 1-12.
    Winkler, G., Maxwell, S. E., Ruemmler, C., & Stollar, V. (1989). Newly synthesized dengue-2 virus nonstructural protein NS1 is a soluble protein but becomes partially hydrophobic and membrane-associated after dimerization. Virology, 171(1), 302-305.
    Winkler, G., Randolph, V. B., Cleaves, G. R., Ryan, T. E., & Stollar, V. (1988). Evidence that the mature form of the flavivirus nonstructural protein NS1 is a dimer. Virology, 162(1), 187-196.
    Wu-Hsieh, B. A., Yen, Y. T., & Chen, H. C. (2009). Dengue hemorrhage in a mouse model. Ann N Y Acad Sci, 1171 Suppl 1, E42-47.
    Wu, S. J., Hayes, C. G., Dubois, D. R., Windheuser, M. G., Kang, Y. H., Watts, D. M., et al. (1995). Evaluation of the severe combined immunodeficient (SCID) mouse as an animal model for dengue viral infection. Am J Trop Med Hyg, 52(5), 468-476.
    Wu, Y. C. (1986). [Epidemic dengue 2 on Liouchyou Shiang, Pingtung County in 1981]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 19(3), 203-211.
    Yang, K. D., Lee, C. S., Hwang, K. P., Chu, M. L., & Shaio, M. F. (1995). A model to study cytokine profiles in primary and heterologously secondary Dengue-2 virus infections. Acta Virol, 39(1), 19-21.
    Yayon, A., Aviezer, D., Safran, M., Gross, J. L., Heldman, Y., Cabilly, S., et al. (1993). Isolation of peptides that inhibit binding of basic fibroblast growth factor to its receptor from a random phage-epitope library. Proc Natl Acad Sci U S A, 90(22), 10643-10647.
    Ye, Q., Wang, Z. H., & Qin, S. K. (2008). [Preparation of heat shock protein 70 (Hsp70) and idiotypic determinant single-chain antibody (Id-ScFv) in a patient with B-cell chronic lymphatic leukemia (B-CLL) and antitumor effect of peptide complex Hsp70-Id]. Ai Zheng, 27(2), 133-138.
    Yu, I. M., Zhang, W., Holdaway, H. A., Li, L., Kostyuchenko, V. A., Chipman, P. R., et al. (2008). Structure of the immature dengue virus at low pH primes proteolytic maturation. Science, 319(5871), 1834-1837.
    Yuill, T. M., Sukhavachana, P., Nisalak, A., & Russell, P. K. (1968). Dengue-virus recovery by direct and delayed plaques in LLC-MK2 cells. Am J Trop Med Hyg, 17(3), 441-448.

    無法下載圖示 校內:2015-08-04公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE