簡易檢索 / 詳目顯示

研究生: 陳俊吉
Chen, Jiun-Ji
論文名稱: 卡氏積圖之容錯超漢彌頓性質
Fault-Tolerant Super-Hamiltonicity ot the Cartesian Product Graph
指導教授: 謝孫源
Hsieh, Sun-Yuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 31
中文關鍵詞: 容錯漢彌頓性卡氏積圖型卡氏積超漢彌頓性容錯k 維度容錯漢彌頓連接性
外文關鍵詞: k-regular, Hamiltonian, Hamiltonian connected, Fault-tolerant, Super fault-tolerant Hamiltonian, Cartesian product, Cartesian product graphs
相關次數: 點閱:130下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   一個k維度並具有漢彌頓環路且有漢彌頓連接性的圖型稱為超漢彌頓圖型。它會在移除k - 2個點、邊後仍然具有漢彌頓環路,並在移除k - 3個點、邊後仍然有漢彌頓連接性。因此,超漢彌頓圖型可說是具有最佳的容錯能力的漢彌頓圖型。在本論文中,我們的目的是進一步證明,以兩個超漢彌頓圖型經過卡氏積圖型運算後,所形成的圖型依然是個超漢彌頓圖型。

      A k-regular Hamiltonian and Hamiltonian connected graph is called super fault-tolerant Hamiltonian if and only if it remains Hamiltonian after removing at most k - 2 nodes and/or edges and remains Hamiltonian connected after removing at most k - 3 nodes and/or edges. A super fault-tolerant Hamiltonian graph has a certain optimal favor with respect to the fault-tolerant Hamiltonicity and Hamiltonian connectivity. In this thesis, we investigate a method to find Hamiltonian cycles and Hamiltonian connectivity in graphs constructed by Cartesian product from any two super fault-tolerant Hamiltonian graph. Therefore, the Cartesian product of two super fault-tolerant Hamiltonian graph is also a super fault-tolerant Hamiltonian graph.

    1 Introduction                     3   1.1 Motivation and Related Discussion       3   1.2 Preview of This Thesis             4 2 Preliminaries                    5   2.1 Basic Definitions of Hamiltonian properties  5   2.2 Definitions of Cartesian product graphs    5   2.3 Basic definition of technique         6 3 Main result                     7   3.1 Some useful lemmas               7   3.2 Hamiltonian Cycles               8   3.3 Hamiltonian Connected Property        17 4 Concluding Remarks                 30

    [1]W.T. Huang, Y.C. Chuang, J.M Tan, L.H Hsu, "Fault-free Hamiltonain cycle in faulty Mobius cubes," J.Comput. Syst. 4(2000) 106-114.

    [2]W.T. Huang, M.Y. Lin, J.M.Tan, L.H.Hsu, "Fault-tolerant ring embedding in faulty crossed cubes," in Proceeding of world Multiconf.Syst., Cybernetic and Inform. SCI'2000 IV, pp.97-102,2000.

    [3]W.T.Huang, J.M.Tan, C.N.Hung, L.H.Hsu, "Fault-tolerant Hamiltonicity of twisted cubes," J.Paralled Distrib. Comput. 62(2002) 591-604.

    [4]Y. C. Chen, C. H. Tsai, L. H. Hsu, J. J. M. Tan, "On some super fault-tolerant Hamiltonian graphs," Applied Mathmatics and Computation, vol. 148, pp. 729--741, 2004.

    下載圖示 校內:2009-09-14公開
    校外:2009-09-14公開
    QR CODE