研究生: |
謝谷孟 Hsieh, Ku-Meng |
---|---|
論文名稱: |
應用環型指叉電極進行糖化血色素阻抗量測晶片之研究 Glycated Hemoglobin Affinity Biosensors with Ring-Shaped Interdigital Electrodes on Impedance Measurement |
指導教授: |
張凌昇
Jang, Ling-Sheng |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 53 |
中文關鍵詞: | 糖化血色素 、環型指叉式電極 、自組性單分子層 、硼酸親合力 、阻抗量測 、電容式生醫感測器 |
外文關鍵詞: | Glycated hemoglobin (HbA1c), ring-shaped interdigital electrodes (RSIDEs), self-assembled monolayer (SAM), thiophene-3-boronic acid (T3BA) Boronic Affinity, Impedance Measurement, Capacitor Biosensor |
相關次數: | 點閱:141 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技發展,糖尿病患者日益攀升,因此糖尿病的預防與控制成為一個急需關注的議題。許多研究提出,控制糖化血色素的濃度可以預防或延緩糖尿病併發症產生,其最大的優勢不同於一般血糖值,容易受到藥物、運動、飲食等因素影響,常有相當大的起伏而造成誤判,糖化血色素之濃度為紅血球生命周期內的平均血糖濃度,較為準確可靠。
目前糖化血色素的量測技術受到檢測儀器成本高、操作複雜、不易攜帶等限制,因此研發成本低、設備小、簡單快速、可攜式的感測晶片為重要的研究議題。本篇論文整合指叉式電極及雙螺旋式電極,並利用交流電滲流可驅動奈米粒子的特性,設計新式環型指叉電極來改善糖化血色素在感測電極上的分佈均勻度及固定效率,進而提升感測的靈敏度,並縮短檢測所需的時間。在電極上利用硫吩硼酸修飾表面形成自組性單分子層,由於硫吩硼酸會與糖類反應產生二醇亞硼酸使糖化血色素固定在電極表面,而生物分子吸附在電極表面時會造成阻抗的變化,最後藉由電極加以電訊號直接量測電極間的電容變化,並比較附著前與附著後的阻抗,不同濃度的糖化血色素會產生不同比例的阻抗變化,成功檢測出濃度區間1~100 ng/µL之糖化血色素,便以此畫出糖化血色素之檢量線。
Glycated hemoglobin (HbA1c) is one of the most important diagnostic assays for the long-term mark of glycaemic control in diabetes. This study presents an affinity biosensor for HbA1c detection based on impedance measurement, the detection process of which is label-free requiring no additional reagents, and features low cost and low sample volume. The ring-shaped interdigital electrodes (RSIDEs) are designed to promote the distribution uniformity and immobilization efficiency of HbA1c, and are further employed to characterize the impedance change and identify various concentrations of HbA1c. The self-assembled monolayer (SAM) of thiophene-3-boronic acid (T3BA) is provided to modify the gold electrode surface. Afterwards, the esterification reaction between HbA1c and T3BA produces a relative change of electrical property on the electrode surface. The RSIDEs with SAM of T3BA exhibits a wide range from 100 to 10 ng/µL producing an approximate logarithmic decrease of impedance, a low detection limit of 1 ng/µL, a good selectivity and short-term stability for HbA1c determination. The remarkable advantages, including miniaturization and low-cost, have the potential of point-care diagnostics for portable sensor development.
[1] H. King, M. Rewers, and WHO Ad-Hoc diabetes reporting group, “Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults,” Diabetes Care, Vol. 16, No. 1, pp. 157-177, Jan. 1993.
[2] A.F. Amos, D.J. McCarty, and P. Zimmet, “The rising global burden of diabetes and its complications: estimates and projections to the year 2010,” Diabet. Med., Vol. 14, No. 5, pp. S1-S85, July 1997.
[3] National Diabetes Information Clearinghouse. Diabetes overview. http://www.niddk.nih.gov/health/diabetes/diabetes.htm.
[4] U. Krishnamurti and M. W. Steffes, “Glycohemoglobin: a primary predictor of the development or reversal of complications of diabetes mellitus,” Clin. Chem., Vol. 47, No. 7, pp. 1157-1165, July 2001.
[5] H. F. Bunn, D. N. Haney, K. H. Gabbay, and P. M. Gallop, “Further identification of the nature and linkage of the carbohydrate in hemoglobin A1c,” Biochem. Biophys. Res. Commun., Vol. 67, Issue 1, pp. 103-109, Nov. 1975.
[6] T. Tanakaa, K. Izawaa, M. Okochia, T. K. Limb, S. Watanabeb, M. Haradab, and T. Matsunagaa, “On-chip type cation-exchange chromatography with ferrocene-labeled anti-hemoglobin antibody and electrochemical detector for determination of hemoglobin A1c level,” Anal. Chim. Acta, Vol. 638, Issue 1, pp.186-190, Apr. 2009.
[7] M. Jenkins and S. Ratnaike, “Capillary electrophoresis of hemoglobin,” Clin. Chem. Lab. Med., Vol. 41, Issue 6, pp. 747-754, June 2005.
[8] M. E. C. Busto, M. Montes-Bayón, E. Añónb, and A. Senz-Medel, “Simultaneous determination of glycated haemoglobin, a long term biomarker of diabetes mellitus, and total haemoglobin by isotope dilution and HPLC-ICP-MS,” J. Anal. At. Spectrom., Vol. 23, Issue 5, pp. 758-764, Mar. 2008.
[9] Y. C. Li, U. Pfüller, E. L. Larsson, H. Jungvid, I. Yu. Galaev, and B. Mattiasson, “Separation of mistletoe lectins based on the degree of glycosylation using boronate affinity chromatography,” J. Chromatogr. A, Vol. 925, Issues 1-2, pp.115-121, Aug. 2001.
[10] C. J. Huang, H. C. Chien, T. C. Chou, and G. B. Lee, “Integrated microfluidic system for electrochemical sensing of glycosylated hemoglobin,” Microfluid Nanofluid, Vol. 10, No. 1, pp. 37-45, June 2011.
[11] L. Qu, S. Xia, C. Bian, J. Sun, and J. Han, “A micro potentiometric hemoglobin immunosensor based on electropolymerized polypyrrole gold nanoparticles composite,” Biosens. and Bioelectron., Vol. 24, Issue 12, pp. 3419-3424, Aug. 2009.
[12] Q. Xue, C. Bian, J. Tong, J. Sun, H. Zhang, and S. Xia, “A micro potentiometric immunosensor for hemoglobin-A1c level detection based on mixed SAMs wrapped nano-spheres array,” Biosens. and Bioelectron., Vol. 26, Issue 5, pp. 2689-2693, Jan. 2011.
[13] Q. Xue, C. Bian, J. Tong, J. Sun, H. Zhang, and S. Xia, “CMOS and MEMS based micro hemoglobin-A1c biosensors fabricated by various antibody immobilization methods,” Sens. Actuat. A Phy., Vol. 169, Issue 2, pp. 282-287, Oct. 2011.
[14] Q. Xue, C. Bian, H. Zhang, and S. Xia, “An integrated micro immunosensor for hemoglobin-A1c level detection,” in Proc. IEEE MESA, pp. 208-212, July 2010.
[15] D. Stöllner, W. Stöcklein, F. Scheller, and A. Warsinke, “Membrane immobilized haptoglobin as affinity matrix for a hemoglobin-A1c immunosensor,” Anal. Chim. Acta, Vol. 470, No. 2, pp. 111-119, Oct. 2002.
[16] L. Fanga, W. Li, Y. Zhou, and C. C. Liu, “A single-use, disposable iridium-modified electrochemical biosensor for fructosyl valine for the glycoslated hemoglobin detection,” Sens. Actuat. B Chem., Vol. 137, Issue 1, pp. 235-238, Mar. 2009.
[17] S. Y. Son, Y. D. Han, K. H. Lee, and H. C. Yoon, “Electrochemical assay for glycated hemoglobin based on the magnetic particle-supported concentration coupled to boronate-diol interactions,” Bull. Korean Chem. Soc., Vol. 31, No. 7, pp. 2103-2106, July 2010.
[18] J. Pˇribyl and P. Skl´adal, “Quartz crystal biosensor for detection of sugars and glycated hemoglobin,” Anal. Chim. Acta, Vol. 530, No.1, pp. 75-84, Feb. 2005.
[19] J. Přibyl and P. Skládal, “Development of a combined setup for simultaneous detection of total and glycated haemoglobin content in blood samples,” Biosens. and Bioelectron., Vol. 21, Issue 10, pp. 1952-1959, Apr. 2006.
[20] J. Halámeka, U. Wollenbergera, W. F. M. Stöckleina, A. Warsinkea, and F. W. Schellera, “Signal amplification in immunoassays using labeling via boronic acid binding to the sugar moiety of immunoglobulin g: proof of concept for glycated hemoglobin,” Anal. Lett., Vol. 40, Issue 7, pp. 1434-1444, May 2007.
[21] T. L. Lasseter, W. Cai, and R. J. Hamers, “Frequency-dependent electrical detection of protein binding events,” Analyst., Vol. 129, Issue 1, pp. 3-8, Jan. 2004.
[22] M. L. Y. Sin, V. Gau, J. C. Liao, D. A. Haake, and P. K. Wong, “Active manipulation of quantum dots using AC electrokinetics,” J. Phys. Chem. C, Vol. 113, No. 16, pp. 6561-6565, Mar. 2009.
[23] T. Sun, N. G. Green, S. Gawad, and H. Morgan, “Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs,” IET Nanobiotechnology, Vol. 1, No. 5, pp. 69-79, Aug. 2007.
[24] X. S. Guo, Y. Q. Chen, M. Pan, and L. R. Wang, “Bispiral microelectrode and its application on protein biochip,” J. of Zhejiang University (Engineering Science), Vol. 39, No. 7, pp. 957-961, July 2005.
[25] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “New approaches to nanofabrication: molding, printing, and other techniques,” Chem. Rev., Vol. 105, No. 4, pp. 1171-1196, Apr. 2005.
[26] X. C. Jiang, T. P. Beyer, Z. Li, J. Liu, W. Quan, R. J. Schmidt, Y. Zhang, W. R. Bensch, P. I. Eacho, and G. Cao, “Enlargement of high density lipoprotein in mice via liver X receptor activation requires apolipoprotein E and is abolished by cholesteryl ester transfer protein expression,” J. Biol. Chem., Vol. 278, No.49, pp. 49072-49078, Aug. 2003.
[27] J. Y. Park, S. H. Kwon, J. W. Park, and S. M. Park, “Label-free detection of DNA molecules on the dendron based self-assembled monolayer by electrochemical impedance spectroscopy,” Anal. Chim. Acta, Vol. 619, No. 1, pp. 37-42, June 2008.
[28] F. Terzi, R. Seeber, L. Pigani, C. Zanardi, L. Pasquali, S. Nannarone, M. Fabrizio, and S. Daolio, “3-methylthiophene self-assembled monolayers on planar and nanoparticle Au surfaces,” J. Phy. Chem. B, Vol.109, No. 41, pp. 19397-19402, Sep. 2005.
[29] S. V. Rao, K. W. Anderson, and L. G. Bachas, “Oriented immobilization of proteins, ” Mikrochim. Acta, Vol. 128, Issues 3-4, pp. 127-143, Sep. 1998.
[30] S. Liu, B. Miller, and A. Chen, “Phenylboronic acid self-assembled layer on glassy carbon electrode for recognition of glycoprotein peroxidase,” Electrochem. Commun., Vol. 7, pp. 1232-1236, Dec. 2005.
[31] N. Kanayama and H. Kitano, “Interfacial recognition of sugars by boronic acid-carrying self-assembled monolayer,” Langmuir, Vol. 16, Issue 2, pp. 577-583, Jan. 2000.
[32] M. N. Velasco and T. Mottram, “Biosensor technology addressing agricultural problems,” Biosyst. Eng., Vol. 84, Issue 1, pp. 1-12, Jan. 2003.
[33] S. Hleli, C. Martelet, A. Abdelghani, N. Burais, and N. Jaffrezic-Renault, “Atrazine analysis using an impedimetric immunosensor based on mixed biotinylated self-assembled monolayer,” Sens. Actuat. B Chem., Vol. 113, Issue 2, pp.711-717, Feb. 2006.
[34] N. N. Mishra, S. Retterer, T. J. Zieziulewicz, M. Isaacson, D. Szarowski, D. E. Mousseau, D. A. Lawrence, and J. N. Turner, “On-chip micro-biosensor for the detection of human CD4+ cells based on AC impedance and optical analysis,” Biosens. and Bioelectron., Vol. 21, Issue 5, pp. 696-704, Nov. 2005.
[35] J. J. Gooding, “Electrochemical DNA Hybridization Biosensors,” Electroanalysis, Vol. 14, Issue 17, pp. 1149-1156, Sep. 2002.
[36] A. A. P. Ferreira, M. J. M. Alves, S. Barrozo, H. Yamanaka, and A. V. Benedetti, “Optimization of incubation time of protein Tc85 in the construction of biosensor: is the EIS a good tool ?,” J. Electroanal. Chem., Vol. 643, Issues 1-2, pp. 1-8, May 2010.
[37] C. Berggren, B. Bjarnason, and G. Johansson, “Capacitive biosensors,” Electroanalysis, Vol. 13, No. 3, pp. 173-180, Jan. 2001.
[38] J. Y. Park, B. Y. Chang, H. Nam, and S. M. Park, “Selective electrochemical sensing of HbA1c on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes,” Anal. Chem., Vol. 80, No. 21, pp. 8035-8044, Oct. 2008.
[39] N. T. Flynn, T. N. T. Tran, M. J. Cima, and R. Langer, “Long-term stability of self-assembled monolayers in biological media,” Langmuir, Vol. 19, Issue 26, pp. 10909-10915, Nov. 2003.
[40] Y. C. Chuang, K. C. Lan, K. M. Hsieh, L. S. Jang, and M. K. Chen, “Detection of glycated hemoglobin (HbA1c) based on impedance measurement with parallel electrodes integrated into a microfluidic device,” Sens. Actuat. B Chem., Vol. 171-172, pp.1222-1230, Aug.-Sep. 2012.