簡易檢索 / 詳目顯示

研究生: 劉怡辰
Liu, Yi-Chen
論文名稱: 應用於風能轉換系統之三相全控制整流器最大功率追蹤類比控制晶片
A MPPT Control IC Applied in Three-Phase Full-Controlled Rectifier for Wind Energy Conversion System
指導教授: 郭泰豪
Kuo, Tai-Haur
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 93
中文關鍵詞: 最大功率追蹤積體電路風能轉換系統
外文關鍵詞: MPPT, integrated circuit (IC), WECS
相關次數: 點閱:71下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出一適用於小型風能轉換系統之最大功率追蹤晶片。有別於傳統的昇壓型整流器架構,此風能轉換系統使用了全控制整流器作為前端交流-直流轉換器以達成低電流協波失真以及高轉換效率;低電流協波失真有助於減少由於扭矩漣波所造成的機械諧振;高轉換效率有助於縮短系統投資回收期。本論文提出了一發電機轉速偵測電路,在不需要微處理器或是數位訊號處理器的協助下也可以計算出目前系統的轉速,使得系統可靠度提高、更加密集以及降低成本。
    最後,設計出一個具有轉動慣量模擬的測試平台以進行更加準確的系統驗證,並且實現一個200瓦的風能轉換系統,其平均電流協波失真小於3%,最大轉換效率到達95.2%。此控制晶片使用台灣積體電路製造股份有限公司所提供之0.35m 2P4M 3.3/5V混合訊號互補式金氧半製程所製造,全晶片面積為1.107 x 1.117 mm2。

    The design and analysis of the MPPT controller for small-scale wind energy conversion system is presented in the thesis. Different from applying a conventional boost rectifier as an AC/DC converter, this work applies the full-controlled rectifier as an AC to DC interface to achieve low current total harmonic distortion (THD) and high conversion efficiency. The low current THD in generator output can reduce the mechanical oscillation introduced by torque ripple, and high conversion efficiency can shorten the system payback period. The proposed rotational speed detection (RSD) circuit provides an elegant and accurate way to detect generator speed without the help of microprocessor or DSP which makes the system more reliable, compact and cost effective.
    Finally, a test rig is proposed with moment of inertia simulator to verify the performance of proposed controller more accurately. A 200W prototype is presented, and the experimental results shows the average current THD is less than 3% and with 95.2% maximum conversion efficiency. The die area is 1.107 x 1.117 mm2, and it is accomplished with TSMC 0.35m 2P4M 3.3V/5V CMOS process.

    摘要 I Abstract II 誌謝 III List of Tables VI List of Figures VII Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation 2 1.3 Organization 5 Chapter 2 Fundamentals of WECS 6 2.1 Wind Turbine Mechanical Characteristics 6 2.1.1 Mechanical Power and Torque 6 2.1.2 Characteristics of Maximum Power Point 9 2.2 Generator Electrical Characteristics 11 2.3 Dynamic Response of WECS 14 2.4 Environmental Setup on HSPICE 16 2.5 Introduction to MPPT Algorithms 18 2.5.1 Tip-Speed Ratio (TSR) Control 18 2.5.2 Perturb and Observe (P&O) Control 19 2.5.3 Optimum Relationship Based (ORB) Control 23 2.5.4 Comparison between P&O and ORB control 25 2.6 Converter structure 28 2.6.1 Two-Stage Converter 28 2.6.2 Half-Controlled Rectifier 29 2.6.3 Full-Controlled Rectifier 30 Chapter 3 System Design and Analysis 32 3.1 Proposed Wind Energy Conversion System 32 3.2 MPPT Control Algorithm with Proposed RSD Function 33 3.3 Modulation Scheme for Full-Controlled Rectifier 36 3.3.1 Generation of Modulation Signal 36 3.3.2 Introduction to SVPWM 38 3.3.3 Carrier-Based PWM 42 3.3.4 Transformation between Carrier-Based PWM and SVPWM 44 Chapter 4 Circuit Design 46 4.1 Introduction 46 4.2 Wide-Swing Constant-Transconductance Bias Circuit 46 4.3 Voltage Sensor 48 4.4 Proposed Absolute Value (ABS) Circuit 52 4.5 Proposed RSD circuit 54 4.5.1 Proposed PWM multiplier 54 4.5.2 Summing Circuit 61 4.5.3 Proposed Ramp Generator 62 4.6 Analog Multiplier 65 4.7 Input Rail-to-Rail Operational Tansconductance Amplifier 71 4.8 Triangular Wave Generator 73 Chapter 5 Measurement Results 77 5.1 Test Rig Setup 77 5.2 Measurement Results 79 5.3 Layout and Die Photo 85 5.4 Comparison 87 Chapter 6 Conclusions and Future Works 88 6.1 Conclusions 88 6.2 Future Works 89 References 90

    [1] Energy Information Administration. (2011, Sep.). International Energy Outlook 2011, Washington, DC. [Online]. Available: http://www.eia.gov/forecasts/ieo/pdf/0484(2011).pdf
    [2] Renewable Energy Policy Network for the 21st Century. Global Renewable Status Report, Milan, France. [Online]. Available: http://www.ren21.net/Portals/0/documents/activities/gsr/GSR2012.pdf
    [3] P. Chang. (2012, Mar.). Small Wind World Report Summary 2012. World Wind Energy Association, Bonn, Germany. [Online]. Available: http://www.wwindea.org
    [4] F. Blaabjerg, Z. Chen, R. Teodorescu, and F. Lov, “Power electronics
    in wind turbine systems,” in Proc. CES/IEEE 5th Int. Power Electron.
    Motion Control Conf. (IPEMC’06), Aug. 2006, vol. 1, pp. 1–11.
    [5] T. F. Chan and L. L. Lai, “Permanent-magnet machines for distributed
    power generation: A review,” in Proc. IEEE Power Eng. Soc. Gen. Meet.,
    Jun. 2007, pp. 1–6.
    [6] K. Johnson, L. Pao, M. Balas, and L. Fingersh, “Control of variablespeed wind turbines: Standard and adaptive techniques for maximizing
    energy capture,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 70–81,
    Jun. 2006.
    [7] K. S. M. Raza, H. Goto, H.-J. Guo, and O. Ichinokura, “A novel algorithm
    for fast and efficient maximum power point tracking of wind energy
    conversion systems,” in Proc. 18th Int. Conf. Elect. Mach., Vilamoura,
    Portugal, Sep. 2008, pp. 1–6.
    [8] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 486–494, Apr. 2006.
    [9] J. Yaoqin, Y. Zhongqing, and C. Binggang, “A new maximum power point
    tracking control scheme for wind generation,” in Proc. PowerCon, 2002,
    pp. 144–148.
    [10] Z. M. Dalala, Z. Zahid, W. Yu, Y. Cho, and J. S. Lai, “Design and Analysis of an MPPT Technique for Small-Scale Wind Energy Conversion Systems,” IEEE Trans. Energy Convers., vol., pp. 1-12, 2013.
    [11] Y. L. Juan, “An integrated-controlled AC/DC interface for microscale wind power generation systems,” IEEE Trans. Power Electron., vol. 26, no. 5, pp. 1377–1384, May 2011.
    [12] K. Tan and S. Islam, “Optimal control strategies in energy conversion of
    PMSG wind turbine system without mechanical sensors,” IEEE Trans.
    Energy Convers., vol. 19, no. 2, pp. 392–399, Jun. 2004.
    [13] A.M.Knight, “Simple Wind Energy Controller for an Expanded Operating Range,” IEEE Trans. on Energy Convers., vol. 20, June 2005.
    [14] C.-T. Pan and Y.-L. Juan, “A novel sensorless MPPT controller for a high-efficiency micro-scale wind power generation system,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 207–216, Mar 2010.
    [15] M. Chinchilla, S. Arnaltes, and 1. Burgos, “Control of permanent­magnet generators applied to variable-speed wind-energy systems connected to the grid,” IEEE Trans. on Energy Convers., vol. 21, no. 1, pp. 130-135, March 2006.
    [16] Y. Xia, K. H. Ahmed, and B. W. Williams, “Wind turbine power coeffi-cient analysis of a new maximum power point tracking technique,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1122–1132, Mar. 2013.
    [17] T. M. U. N. Mohan, and W. P. Robbins, Power Electronics: Converters, Applications, and Design. Hoboken, NJ: Wiley, 1995.
    [18] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard 519, 1992, 2010.
    [19] S. Heier, Grid Integration of Wind Energy Conversion Systems. Hoboken, NJ: Wiley, 2006.
    [20] S. J. Chapman, Electric Machinery Fundamentals. Singapore: McGraw-Hill, 1999.
    [21] C. Nichita, D. Luca, B. Dakyo, and E. Ceanga, “Large band simulation of the wind speed for real time wind turbine simulators,” IEEE Trans. on Energy Convers., vol. 17, no. 4, pp. 523 529, Dec. 2002.
    [22] M. Karrari, W. Rosehart, and O. P. Malik, “Comprehensive Control Strategy for a Variable Speed Cage Machine Wind Generation Unit,” IEEE Trans. Energy Convers., vol. no.2, pp. 415-423, June 2005.
    [23] A. R. Prasad, P. D. Ziogas, and S. Manias, “An active power factor correction technique for three-phase diode rectifiers,” IEEE Trans. Power Electron., vol. 6, no. 1, pp. 83–92, Jan. 1991.
    [24] O. C. Castillo, E. F. Amoros, G. G. Sanfeliu, and L. Morales, “Average Current Mode Control of Three-Phase Boost Rectifiers with Low Harmonic Distortion Applied to Small Wind Turbines,” in Proc. Electronics, Robotics and Automotive Mechanics Conf. (CERMA 2009), Sep. 2009, pp. 462–467.
    [25] L. Kuo-Yuan, C. Yaow-Ming, and C. Yung-Ruei, “MPPT battery charger for stand-alone wind power system,” IEEE Trans. Power Electron., vol. 26, no. 6, pp. 1631–1638, Jun. 2011.
    [26] J. M. Carrasco, L. G. Franquelo, J. T. Bialasiewicz, E. Galván, R. C. P. Guisado, M. A. M. Prats, J. I. León, and N. Moreno-Alfonso, “PowerElectronic Systems for the Grid Integration of Renewable Energy Sources: A Survey,” IEEE Trans. Ind. Electron, vol. 53, no. 4, pp. 1002-1016, August 2006.
    [27] M. M. Reis, B. L. Soares, L. H. S. C. Barreto, C. E. A. Silva, R. P. T. Bascope, and D. S. Oliveira, Jr., “A variable speed wind energy conversion system connected to the grid for small wind generator,” in Proc. 23rd Annu. IEEE Appl. Power Electron. Conf. Expo. (APEC 2008), Feb. 24–28, pp. 751–755.
    [28] D.S. Oliveira, M.M. Reis, C. Silva, L B. Colado, F. Antunes, B.L. Soares, “A Three-Phase High-Frequency Semicontrolled Rectifier for PM WECS,” IEEE Trans. Power Electron., vol.25, no.3, pp.677-685, March 2010.
    [29] J. Kikuchi, M. D. Manjrekar, and T. A. Lipo, “Performance improvement of half controlled 3-phase PWM boost rectifier,” in Proc. 30th Annu. IEEE Power Electron. Spec. Conf., 1999, vol. 1, pp. 319–324.
    [30] C.E.A. Silva, D. S. Oliveira Jr., L.H.S.C. Barreto, R.P.T. Bascopé, “A Novel Three-phase Rectifier with High Power Factor for Wind Energy Conversion Systems”, Power Electronics Conference, 2009, COBEP '09, pp. 985-992.
    [31] Z. Keliang and W. Danwei, “Relationship between space-vector modulation and three-phase carrier-based PWM: A comprehensive analysis,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 186–196, Feb. 2002.
    [32] Blasko, V. “Analysis of a hybrid PWM based on modified space vector and triangle comparison methods,” Record Conference of the IAS ’96., vol. 2, no., pp. 947-955 vol. 2, 6-10 Oct. 1996
    [33] J. Ramírez-Angulo et al., “Comparison of conventional and new flipped voltage structures with increased input/output signal swing and current sourcing/sinking capabilities,” in Proc. MWSCAS, Cincinnati, OH, USA, Aug. 2005, vol. 2, pp. 1151–1154.
    [34] G. Han and E. S. Sinencio, “CMOS transconductance multipliers: a tutorial, ” IEEE Trans. Circuits Syst. II, vol. 45, no. 12, pp. 1550-1563, 1998.

    下載圖示 校內:2016-08-21公開
    校外:2016-08-21公開
    QR CODE