簡易檢索 / 詳目顯示

研究生: 李鴻銘
Lee, Hong-Ming
論文名稱: 考慮不同元件品質因素、不同模態相速及雙頻特性的微波濾波器設計
Microwave Filter Designs with Different Component Q, Different Mode Velocities, and Dual-Band Characteristics
指導教授: 蔡智明
Tsai, Chih-Ming
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 132
中文關鍵詞: 雙頻耦合線品質因素微波濾波器
外文關鍵詞: coupled lines, dual-band, microwave filters, Q factor
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文的研究在於耦合線濾波器設計的探討,其中包含改善由於不同奇偶模態相速所造成的通帶響應扭曲,以及建立雙頻濾波器的合成方法。本論文首先研究諧振器的品質因素對於濾波器的影響,並且引進元件品質因素分佈的概念。我們分析了在濾波器中每一級諧振器的元件損耗,發現它們對於通帶傳輸的影響皆不相同,尤其在通帶邊緣更是明顯。無疑地,那些對於通帶響應影響最為明顯的關鍵性元件必須特別注意並且仔細地製作。另一方面,為了降低成本以及縮小電路體積的考量,其它對於通帶響應影響較小的諧振器可以較低品質因素的元件取代。我們發現當濾波器由不同品質因素的諧振器所組成時,元件品質因素必須以鐘形分佈的方式才能使通帶響應達到最佳化。

      其次,本論文先概略介紹耦合線濾波器的合成方式。耦合線濾波器最外側的耦合線段主要的目的在於阻抗轉換,它們通常需要較強的耦合量而造成實現上的不易,因此我們建議以幾個設計方法加以改善。當濾波器設計使用耦合微帶線實現時,奇偶模態相速不同的現象是不可避免的,然而這些不同的相速通常會造成通帶響應的品質低落,例如反射量増加,以及寬頻改變。為了改善因不同相速所造成的問題,我們引進了一個新的有效奇偶模態特性阻抗的概念,利用這樣的方式能夠使設計者在應用傳統濾波器設計方法於耦合微帶線濾波器時,同時考慮不同模態相速的因素,進而改善原先被扭曲的通帶響應。

      本論文的最後, 我們嚴謹地建立了雙頻傳輸線濾波器的合成方法。為了實現具有雙頻特性的諧振器,我們完整地探討不同架構的傳輸線電路,包含開路及短路的傳輸線段以串聯、並聯的方式形成的不同電路組合。另外我們亦提出適合應用於這些諧振器的雙頻倒轉器結構,使其能夠很容易地和相鄰的諧振器結合。在這些雙頻濾波器設計中,耦合線電路扮演了重要的角色,因為它們同時具有諧振器及倒轉器的特性,因此能夠降低元件數量而使整個電路體積更加結實。為了增加這些耦合線電路在實現上的可能性,我們提出了幾個步階阻抗耦合線結構,並且經由推導得到它們的等效電路及設計公式,這些耦合線結構的等效電路在雙頻濾波器的設計上有相當大的助益。我們詳細地分析與比較所提出的各式雙頻濾波器的特性,並且藉由數個濾波器的製作驗證了本論文所闡述的設計方法的正確性。

      This research is about the improved coupled-line filter designs including the correction for the distortions caused by different even- and odd-mode phase velocities and the development of synthesis procedure for dual-band filters. This thesis starts from the fundamental studies of the effects of resonator Q and the concept of component Q distribution is introduced. The effects of component losses for the resonator in each stage of filters are evaluated, and they are found quite different on the transmission response in the entire passband, especially at the band edges. The critical components should undoubtedly be paid more attention to and be carefully manufactured. On the other hand, the others could be replaced with low-Q alternatives for the cost and circuit size reduction. When resonators with different Q are used in a filter, it was found that a bell-shaped Q distribution should be selected to achieve optimal passband responses.

      In the second part of this thesis, the coupled-line filter synthesis is first reviewed. The coupled-line sections at the outer stages of the filter are treated as impedance transformers, and some designs for the improvement on the tight couplings are suggested. When coupled microstrip-line structures are employed in filter designs, the difference in the mode velocities is inevitable. This may cause the degradations in the passband such as increased reflection and altered bandwidth. A new concept of effective even- and odd-mode characteristic impedances is then introduced for improving the passband responses. This approach has taken the effects of velocity difference into account and allows the microstrip filters designed with the classical filter synthesis procedures.

      In the last part of this thesis, rigorous synthesis methods of distributed dual-band filters are developed. Different topologies of transmission-line circuits such as the combinations of open and short stubs in series and parallel are fully investigated for the implementation of dual-band resonators. Suitable structures of dual-band inverters are also given and can be easily merged with the adjacent resonators. In the dual-band filter designs, the coupled-line circuits are the most important elements since they have the properties of the resonators and inverters, and thus can make the dual-band filters more compact. In order to increase the feasibility of the coupled-line circuits, several stepped-impedance coupled-line structures are proposed and their equivalent circuits and design equations are then derived, which are helpful to the dual-band filter designs. The characteristics of the proposed dual-band filters are analyzed and compared, and all of them have been experimentally verified.

    Chapter 1 Introduction----1   1.1 Motivation----1   1.2 Outline of the Thesis----3 Chapter 2 Effects of Component Q Distribution on Microwave Filters----6   2.1 Introduction----6   2.2 Formulation of Passband Insertion Loss and Group Delay Deviations----8   2.3 Effects of Component Q Distribution on the Transmission of the Predistorted Filters----20   2.4 Filter Design Examples----23 Chapter 3 Filter Synthesis with Coupled Lines----29   3.1 CoupledLine Filter Design Using Richards’Transformation----29     3.1.1 Coupled-Line Filter Synthesis----29     3.1.2 Input/Output Matching Network Using Coupled-Line Section----34     3.1.3 Input/Output Matching Network Using Tapped-Line Structure----37   3.2 Coupled-Line Filter Design Based on Cohn's Design Method----43     3.2.1 Equivalent of Coupled Lines and Filter Design Procedure----43     3.2.2 Coupled Lines with Loose Couplings in Input/Output Sections----45   3.3 Coupled-Microstrip Filter Design Using Effective Even-Mode and Odd-Mode Characteristic Impedances----52     3.3.1 Transmission Zero Conditions----54     3.3.2 Filter Design Problems----56     3.3.3 Effective Z0e and Z0o----60     3.3.4 Design Equations for Right Z0e and Z0o----64     3.3.5 Design Examples and Measurements----67 Chapter 4 Synthesis of Dual-Band Filters----71   4.1 Introduction----71   4.2 Type I Filter----72     4.2.1 Design Equations of Type I Dual-Band Resonator----74     4.2.2 Dual-Band Inverter----78     4.2.3 Filter Design Examples----79   4.3 Type II Filter----83     4.3.1 Design Equations of Type II Dual-Band Resonator----84     4.3.2 Realization Using Coupled-Line Circuits----87       4.3.2.1 Coupled-Line Sections in the Outer Stages----88       4.3.2.2 Coupled-Line Sections in the Middle Stages----90     4.3.3 Filter Design Example----96   4.4 Type III filter----99     4.4.1 Stepped-Impedance Asymmetrical Coupled Lines and Its Equivalent Circuit----100     4.4.2 Modified Type III Dual-Band Filter and Design Equations----104     4.4.3 Design of Coupled-Line Sections----108       4.4.3.1 Coupled-Line Sections in the Middle Stages----108       4.4.3.2 Coupled-Line Sections in the Outer Stages----109     4.4.4 Filter Design Example----114 Chapter 5 Concluding Remarks----119   5.1 Summary of the Thesis----119   5.2 Suggestions for Further Research----125 References----127

    [1.1] P. I. Richards, “Resistor-transmission-line circuits,” Proc. IRE, vol. 36, pp. 217-220, Feb. 1948.

    [1.2] H. Ozaki and J. Ishii, “Synthesis of a class of strip-line filters,” IRE Trans. Circuit Theory, vol. 5, pp. 104-109, June 1958.

    [1.3] R. J. Wenzel, “Exact design of TEM microwave networks using quarter-wave lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-12, pp. 94-111, Jan. 1964.

    [1.4] S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IRE Trans. Microwave Theory Tech., vol. MTT-6, pp. 223-231, Apr. 1958.

    [1.5] G. L. Matthaei, “Interdigital band-pass filters,” IRE Trans. Microwave Theory Tech., vol. MTT-10, pp. 479-491, Nov. 1962.

    [1.6] R. J. Wenzel, “Exact theory of interdigital band-pass filters and related coupled structures,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 559-575, Sep. 1965.

    [1.7] G. L. Matthaei, “Comb-line band-pass filters of narrow or moderate bandwidth,” Microwave J., vol. 6, pp. 82-91, Aug. 1963.

    [1.8] E. G. Cristal and S. Frankel, “Hairpin-line and hybrid hairpin-line/half-wave parallel-coupled-line filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-20, pp. 719-728, Nov. 1972.

    [1.9] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 1413-1417, Dec. 1980.

    [1.10] S. Avrillon, A. Chousseaud, and S. Toutain, “Dividing and filtering function integration for the development of a band-pass filtering power amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 2002, pp. 1173-1176.

    [1.11] J. –T. Kuo and H. –S. Cheng, “Design of quasi-elliptic function filters with a dual-pssband response,” IEEE Microwave and Wireless Components Lett., vol. 14, pp. 472-474, Oct. 2004.

    [2.1] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures, Norwood, MA: Artech House, 1980, ch. 4.

    [2.2] S. B. Cohn, “Dissipation loss in multiple-coupled-resonator filters,” Proc. IRE, vol. 47, pp. 1342-1348, Aug. 1959.

    [2.3] M. Dishal, “Design of dissipative band-pass filters producing desired exact amplitude-frequency characteristics,” Proc. IRE, vol. 37, pp. 1050-1069, Sep. 1949.

    [2.4] J. MacDonald and G. Temes, “A simple method for the predistortion of filter transfer functions,” IEEE Trans. Circuit Theory, vol. 10, pp. 447-450, Sep. 1963.

    [2.5] A. Williams, W. Bush, and R. Bonetti, “Predistortion techniques for multicoupled resonator filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 402-407, May 1985.

    [2.6] M. Yu, W. –C. Tang, A. Malarky, V. Dokas, R. Cameron, and Y. Wang, “Predistortion technique for cross-coupled filters and its application to satellite communication systems,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, pp. 2505-2515, Dec. 2003.

    [2.7] I. Hunter, Theory and Design of Microwave Filters, London: IEE, 2001, ch. 8.

    [2.8] S. Darlington, “Synthesis of reactance four-poles which produce prescribed insertion loss characteristics,” J. Math. Phys. vol.18, pp. 257-353, Sep. 1939.

    [2.9]“Simplified filter tuning using time domain,” Agilent Technol. Corporation, Palo Alto, CA, Applicat. Note 1287-8, 2001.

    [3.1] R. J. Wenzel, “Exact design of TEM microwave networks using quarter-wave lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-12, pp. 94-111, Jan. 1964.

    [3.2] J. A. G. Malherbe, Microwave Transmission Line Filters, Dedham, MA: Artech House, 1979.

    [3.3] P. A. Kirton and K. K. Pang, “Extending the realizable bandwidth of edge-coupled stripline filter,” IEEE Trans. Microwave Theory Tech., vol. MTT-25, pp. 672-676, Aug. 1977.

    [3.4] B. J. Minnis, “Printed circuit coupled-line filters for bandwidths up to and greater than an octave,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, pp. 215-222, Mar. 1981.

    [3.5] M. Dishal, “A simple design procedure for small percentage bandwidth round-rod interdigital filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 696-698, Sep. 1965.

    [3.6] E. G. Cristal, “Tapped-line coupled transmission lines with applications to interdigital and combline filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp. 1007-1012, Dec. 1975.

    [3.7] J. S. Wong, “Microstrip tapped-line filter design,” IEEE Trans. Microwave Theory Tech., vol. MTT-27, pp. 44-50, Jan. 1979.

    [3.8] C. –Y. Ho and J. H. Weidman, “Improved design of parallel coupled line filters with tapped input/output,” Microwave Journal, pp. 127-128, Oct. 1983.

    [3.9] K. –W. Kim, C. –H. Park, and S. –J. Han, “A new design procedure of tapped coupled-line filters,” IEEE Antennas and Propagation Society Int. Symp. Dig., vol. 3, pp. 2863-2866, 2004.

    [3.10] S. B. Cohn, “Parallel-coupled transmission-line-resonator filters,” IRE Trans. Microwave Theory Tech., vol. MTT-6, pp. 223-231, Apr. 1958.

    [3.11] S. B. Cohn, “Direct-coupled-resonator filters,” Proc. IRE, vol. 45, pp. 187-196, Feb. 1957.

    [3.12] D. Ahn, C. –S. Kim, and M. –H. Chung, “The design of parallel coupled line filter with arbitrary image impedance,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 1998, pp. 909-912.

    [3.13] M. Makimoto and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-28, pp. 1413-1417, Dec. 1980.

    [3.14] M. Matsuo, H. Yabuki, and M. Makimoto, “The design of a half-wavelength resonator BPF with attenuation poles at desired frequencies,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 2000, pp. 1181-1184.

    [3.15] C. –M. Tsai, S. –Y. Lee, and H. –M. Lee, “Transmission-line filters with capacitively loaded coupled lines,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, pp. 1517-1524, May 2003.

    [3.16] G. Zysman and A. Johnson, “Coupled transmission line networks in an inhomogeneous dielectric medium,” IEEE Trans. Microwave Theory Tech., vol. MTT-17, pp. 753-759, Oct. 1969.

    [3.17] D. Kajfez and S. Govind, “Effect of difference in odd- and even-mode wavelengths on a parallel-coupled bandpass filter,” Electron. Lett., vol. 11, pp.117-118, Mar. 1975.

    [4.1] H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination technique for dual mode portable telephones,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 1997, pp. 789-792.

    [4.2] L. –C. Tsai and C. –W. Hsue, “Dual-band bandpass filters using equal-length coupled-serial shunted lines and Z-transform technique,” IEEE Trans. Microwave Theory Tech., vol. MTT-52, pp. 1111-1117, Apr. 2004.

    [4.3] S. Avrillon, A. Chousseaud, and S. Toutain, “Dividing and filtering function integration for the development of a band-pass filtering power amplifier,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 2002, pp. 1173-1176.

    [4.4] H. –M. Lee, C. –R. Chen, C. –C. Tsai, and C. –M. Tsai, “Dual-band coupling and feed structure for microstrip filter design,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 3, 2004, pp. 1971-1974.

    [4.5] J. –T. Kuo and H. –S. Cheng, “Design of quasi-elliptic function filters with a dual-pssband response,” IEEE Microwave and Wireless Components Lett., vol. 14, pp. 472-474, Oct. 2004.

    [4.6] C. Quendo, E. Rius, and C. Person, “An original topology of dual-band filter with transmission zeros,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 2003, pp. 1093-1096.

    [4.7] P. Rizzi, Microwave Engineering, Passive Circuits, Englewood Cliffs, NJ: Prentice-Hall, 1988, pp. 466-468.

    [4.8] C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, pp. 734–743, Mar. 2003.

    [4.9] C. Quendo, E. Rius, and C. Person, “Narrow bandpass filters using dual-behavior resonators based on stepped-impedance stubs and different-length stubs,” IEEE Trans. Microwave Theory Tech., vol. MTT-52, pp. 1034–1044, Mar. 2004.

    [4.10] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures, Norwood, MA: Artech House, 1980, ch. 8.

    [4.11] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filter, Impedance-Matching Networks, and Coupling Structures, Norwood, MA: Artech House, 1980, ch. 5.

    [4.12] C. Monzon, “A small dual-frequency transformer in two sections,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, pp. 1157–1161, Apr. 2003.

    [5.1] S. B. Cohn, “Dissipation loss in multiple-coupled-resonator filters,” Proc. IRE, vol. 47, pp. 1342-1348, Aug. 1959.

    [5.2] A. Williams, W. Bush, and R. Bonetti, “Predistortion techniques for multicoupled resonator filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 402-407, May 1985.

    [5.3] M. Yu, W. –C. Tang, A. Malarky, V. Dokas, R. Cameron, and Y. Wang, “Predistortion technique for cross-coupled filters and its application to satellite communication systems,” IEEE Trans. Microwave Theory Tech., vol. MTT-51, pp. 2505-2515, Dec. 2003.

    [5.4] D. Ahn, C. –S. Kim, and M. –H. Chung, “The design of parallel coupled line filter with arbitrary image impedance,” in IEEE MTT-S Int. Microwave Symp. Dig., vol. 2, 1998, pp. 909-912.

    [5.5] S. –Y. Lee and C. –M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microwave Theory Tech., vol. MTT-48, pp. 2482-2490, Dec. 2000.

    [5.6] C. –F. Chen, T. –Y. Huang, and R. –B. Wu, “Design of microstrip bandpass filters with multiorder spurious-mode suppression,” IEEE Trans. Microwave Theory Tech., vol. MTT-53, pp. 3788-3793, Dec. 2005.

    下載圖示 校內:2007-02-07公開
    校外:2007-02-07公開
    QR CODE