簡易檢索 / 詳目顯示

研究生: 李侑霖
Lee, Yu-Lin
論文名稱: 以正交特徵分解法進行圓柱後縱向渦流結構分析
POD analysis of longitudinal vortex structures behind a circular cylinder
指導教授: 張克勤
Chang, Keh-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 172
中文關鍵詞: 粒子影像測速正交特徵分解縱向渦流結構參數分析
外文關鍵詞: PIV, POD, coherent structure, longitudinal vortex structures, parametric analysis
相關次數: 點閱:86下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 前人對於縱向渦流實驗縱然很多,但對於實驗結果,卻沒有完整分析縱向渦流之
    特性,因此本研究中主要利用粒子影像測速技術(Particle Image Velocimetry)於低、中
    雷諾數(ReD = 3820、9440)之條件下探討二維圓柱近域尾流區之縱向渦旋的產生與脫
    離過程以及流場中的組織性結構,同時使用擁有高時間解析及足夠達到統計穩定的樣
    本數之熱線測速儀(Hot-Wire Anemometry)加以佐證其速度量測之精確性,並利用正交
    特徵分解(Proper Orthogonal Decomposition, POD)PIV 數據,為所得到的龐大矩陣結果
    進行分析,進而研究 secondary vortex 於圓柱後尾流的特性。
    圓柱尾流存在具有組織性的大尺度相干性結構,本實驗使用 POD 進行降維分析,
    分析尾流能量變化,並使用頻譜分析辨認出大尺度相干性結構。 在低、中速實驗中,
    由流場的上游(0.5 - 6 d)和中游(6 - 11.5 d)兩區段中 organized motion 的能量貢獻來觀
    察其卡門渦街和縱向渦流的能量占比,且發現其能量占比隨著與圓柱的距離增加而衰
    退,衰退速率亦與雷諾數呈正相關性關係,並利用熱線測速儀和 PIV 結果之 FFT 圖,
    分析縱向渦流的頻率,其中於低速流場可同時觀測到比卡門渦街主頻(115 Hz)小或大
    的頻率峰值,如 45 Hz 和 160 Hz,於中速流場也可同時觀測到比卡門渦街主頻(300
    Hz)小或大的頻率峰值,如 37 Hz 和 1307 Hz,意旨縱向渦流之頻率並非以固定規律出
    現於頻譜之中。
    本研究也針對 POD 的三項參數進行分析。第一項為拍攝視場,拍攝視場(Field of
    View, FOV)大小的選擇主要為完整拍攝週期性尾流並分析其能量,根據斯特勞斯哈爾
    數(Strouhal number)可求得,於本研究沿 x 方向約需使用 5.5 d (d :圓柱直徑),沿 z 方
    向則需 12.5 d 來進行分析。第二項為樣本(sample)數量之影響,透過遞增樣本數並與總樣本數以直方圖相交法找出足以描述上游與中游的樣張數。第三項為流場重建時所
    使用模態的數量,透過本實驗誤差所得之能量計算標準藉以精確決定所需之模態後重
    建紊態流場。

    Although there are many experiments on the study of longitudinal vortices, the characteristics of longitudinal vortices have not been thoroughly analyzed for the experimental results. Therefore, in this study, the particle image velocimetry (PIV) is used to investigate at low and medium Reynolds numbers (3820 and 9440) and to identify the generation of the longitudinal vortex and the process of the vortex shedding in the near-wake region of the two-dimensional cylinder. PIV and the proper orthogonal decomposition (POD) analysis method is applied to study the characteristics of the secondary vortex in the wake behind the cylinder. The information of each instantaneous flow field was projected to different modes. Also, organized structures in the flow field were measured by Hot-Wire Anemometry (HWA) to prove the accuracy of the velocity measurement made by PIV.
    There are organized large-scale coherent structures in the near wake behind the cylinder. In this experiment, POD was used for dimensionality reduction analysis to analyze the change of wake energy, and spectrum analysis was used to identify the large-scale coherent structure in each mode. In the low and medium velocity experiments, the energy contribution of the organized motion in the upstream (0.5 - 6 d) and midstream (6 - 11.5 d) sections of the flow field was used to observe the energy proportion of the Karman vortex street and the longitudinal vortex. By observation, its energy ratio declines with the increase of the distance from the cylinder, and the decline rate is also positively correlated with the Reynolds number, which means a higher Reynolds number declines faster. The results of hot-wire and PIV are analyzed by the fast Fourier transform so the dominant frequencies of the longitudinal vortex can be acquired. The domain of frequency peaks is smaller or larger than the main frequency of the Karman vortex street (115 Hz) in low-speed flow fields that can be observed simultaneously, such as 45 Hz and 160 Hz. In addition, the domain of frequency peaks is smaller or larger than the primary frequency of the Karman vortex street (305Hz) can also be observed at the same time, such as 37 Hz and 1307 Hz in the case at Re = 9440, meaning that the frequencies of the longitudinal vortices do not appear in the frequency spectrum with a regular pattern.
    Three POD parameters are analyzed in the study. Selection of the field of view (FOV) is made so that it can completely capture the periodic wake and analyze its energy, which is obtained according to the Strouhal number and the researches of Wu et al. (1996), and Williamson (1996), and Scarano et al. (2009). For this study, the analysis used approximately 5.5 d (d: cylinder diameter) along the streamwise direction and 12.5 d along the span-wise direction. The second term is the effect of the number of samples by increasing the number of samples and intersecting the total number of samples with the Histogram Intersection Similarity Method (HISM) to find the number of samples that are sufficient to describe the upstream and midstream flow field. The third item is the number of modes used to reconstruct the flow field, and the energy standard obtained through the measurement error of PIV can determine the required modes to reconstruct the turbulent flow field.

    目錄 摘要 i 誌謝 xxxii 表目錄 xxxvi 圖目錄 xxxvii 符號說明 xl 第一章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-2-1熱線測速(Hot-wire Anemometry, HWA) 2 1-2-2粒子影像測速(Particle Image Velocimetry, PIV) 3 1-2-3 正交特徵分解(Proper Orthogonal decomposition, POD) 8 1-3 研究動機與目的 11 第二章 實驗設備 15 2-1 風洞裝置 15 2-2 測試段模型 17 2-3 移動機構 18 2-4 校正儀器 19 2-4-1 壓力校正器 19 2-4-2 壓力轉換器 19 2-4-3 皮托管 20 2-5 熱線測速系統 22 2-5-1 熱線探針 22 2-5-2 熱線測速主機 24 2-5-3 熱線模組 25 2-5-4 資料數據截取系統 26 2-5-5 Stream line應用軟體(Stream Ware) 27 2-6 粒子影像測速系統 28 2-6-1 高速攝影機 28 2-6-2 拍攝鏡頭 28 2-6-3 雷射及光學鏡組 29 2-6-4 追蹤粒子(seedings)及進料裝置 30 2-6-5 PIV計算軟體 31 第三章 實驗方法與分析 32 3-1 測試段 32 3-2 熱線測速儀 33 3-2-1 實驗原理 33 3-2-2 實驗參數設定 37 3-3 粒子影像測速法 38 3-3-1 實驗原理 38 3-3-2 實驗參數及設定 39 3-4 實驗數據分析 42 3-4-1 圓柱尾流之紊流特性 42 3-4-1-1 紊流統計值(turbulence statistics) 42 3-4-1-2 時域數據分析(time-domain data analysis) 45 3-4-1-3 頻譜分析(frequency-domain data analysis) 46 3-4-2 尺度分解(decomposition by scale) 46 3-4-2-1雷諾分解及三重訊號分解法(triple decomposition) 46 3-4-2-2正交特徵分解(Proper Orthogonal Decomposition, POD) 47 3-5 誤差(Uncertainty)分析 51 3-6 顆粒追蹤分析 53 3-7 參數分析與參考 54 3-7-1 樣張數量 54 3-7-1-2直方圖相交法 54 3-7-2 拍攝視場 55 3-7-3 重建流場所需模態數量 56 第四章 結果與討論 57 4-1 POD計算之參數分析60 4-1-1樣張數量 60 4-1-2拍攝視場 ( Field of View, FOV ) 66 4-1-3重建流場所需模態數量 68 4-2 統計分析 71 4-3 正交特徵分解(POD)分析 81 4-3-1泰勒微尺度分析 81 4-3-2 模態能量分布與頻率分析 88 4-3-3 組織性結構能量衰退分析 157 第五章 結論與未來建議 164 5-1結論 164 5-2未來建議 166 參考文獻 167

    Adrian, R. J. (1986), “Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry”, Applied Optics 1, pp. 3855-3858
    Alex D. Hwang, Emily C. Higgins & Marc Pomplun. (2009). A model of top-down attentional control during visual search in complex scenes. Journal of Vision, 9, 25.
    Barkley D. and Henderson R. D. (1996). Three-dimensional Floquet stability analysis of the wake of a circular cylinder. Journal of fluid mechanics, 322, 215-241.
    Bearman P.W., Morel T. (1983) Effect of free stream turbulence on the flow around bluff bodies, Progress in Aerospace Sciences, Volume 20, Issues 2–3, Pages 97-123.
    Bernero, S., & Fiedler, H. (2000). Application of particle image velocimetry and proper orthogonal decomposition to the study of a jet in a counterflow. Experiments in Fluids, 29(1), S274-S281.
    Bohandy, J., Kim, B., & Adrian, F. (1986). Metal deposition from a supported metal film using an excimer laser. Journal of Applied Physics, 60(4), 1538-1539.
    Braza, M. (1986). Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. Journal of fluid mechanics, 166, 79-130
    Braza, M., Faghani D., and Persillon, H. (2001). Successive stages and the role of natural vortex dislocations in three-dimensional wake transition. Journal of fluid mechanics, 439, 1-41
    Brede M., Eckelmann H. & Rockwell D. (1996) On secondary vortices in the cylinder wake. Physics of Fluids, 8, 2117.
    Browne, L., Antonia, R., & Shah, D. (1987). Turbulent energy dissipation in a wake. Journal of fluid mechanics, 179, 307-326.
    Butcher, D., & Spencer, A. (2019). Cross-correlation of POD spatial modes for the separation of stochastic turbulence and coherent structures. Fluids, 4(3), 134.
    Cantwell, B., & Coles, D. (1983). An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. Journal of fluid mechanics, 136, 321-374.
    Chasnov, J. R. (1991). Simulation of the Kolmogorov inertial subrange using an improved subgrid model. Physics of Fluids A: Fluid Dynamics, 3(1), 188-200.
    Chuychai, P., Weygand, J., Matthaeus, W., Dasso, S., Smith, C., & Kivelson, M. (2014). Technique for measuring and correcting the Taylor microscale. Journal of Geophysical Research: Space Physics, 119(6), 4256-4265.
    Cooley, James W. and John W. Tukey (1965) “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19: 297-301.
    Cutler, A., & Bradshaw, P. (1991). A crossed hot-wire technique for complex turbulent flows. Experiments in Fluids, 12(1-2), 17-22.
    Dong-Lai Gao, Guan-Bin Chen, Ye-Wei Huang, Wen-Li Chen, Hui Li.(2020). Flow characteristics of a fixed circular cylinder with an upstream splitter plate: On the plate-length sensitivity, Experimental Thermal and Fluid Science,Volume 117.
    Grant, H. L. (1958). The large eddies of turbulent motion. Journal of Fluid Mechanics, 4(2), 149-190.
    Goupillaud, P., Grossman, A. and Morlet J., (1984) “Cycle-Octave and Related Transforms in Seismic Signal Analysis”, Geoexploration 23, 85-102.
    Hart, D. P. (2000). PIV error correction. Experiments in Fluids, 29(1), 13-22.
    Hussain A. K. M. F. and Reunolds W. C. (1970). The mechanics of an organized wave in turbulent shear flow. Journal of Fluid Mechanics, 41(2), 241-258.
    Hussain, A. F., & Hayakawa, M. (1987). Eduction of large-scale organized structures in a turbulent plane wake. Journal of fluid mechanics, 180, 193-229.
    Jørgensen, Finn E. How to measure turbulence with hot-wire anemometers - a basic guide
    Karniadakg, E. & Triantafylmgu, S. (1989). Frequency selection and asymptotic states in laminar wakes. Journal of Fluid Mechanics, 199, 441-469.
    Kanaris N., Grigoriadis D. & Kassinos S. (2011). Three dimensional flow around a circular cylinder confined in a plane channel. Physics of Fluids, 23
    Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image velocimeters.Part I: Double pulsed systems. Measurement science and technology, 1(11), 1202.
    Kellnerova, R., Kukacka, L., Uruba, V., Jurcakova, K., & Janour, Z. (2012). Detailed analysis of POD method applied on turbulent flow. Paper presented at the EPJ web of conferences.
    Kimura, I. & T. Takamori(1986). Image Processing of Flow around A Circular Cylinder by Using Correlation Technique. Flow Visua/ization IV (ed. Veret. C.) pp.221-226, Washington
    King, L. V. (1914). XII. On the convection of heat from small cylinders in a stream of fluid: Determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Philosophical transactions of the royal society of London. series A, containing papers of a mathematical or physical character, 214(509-522), 373-432.
    Kolmogorov, A. N. 1 941a. Local structure of turbulence in an incompressible fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR, 30, 299-303.
    Kolmogorov, A. N. 1 941b. Logarithmically normal distribution of the size of particles under fragmentation. Dokl. Akad. Nauk SSSR, 31, 99-101.
    Kolmogorov, A. N. 1 941c. Decay of isotropic turbulence in an incompressible viscous fluid. Dokl. Akad. Nauk SSSR, 31, 538-4.
    Kolmogorov, A. N. 1 941d. Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 19-21.
    Kourta, A., Boisson, H., Chassaing, P., & Minh, H. H. (1987). Nonlinear interaction and the transition to turbulence in the wake of a circular cylinder. Journal of fluid mechanics, 181, 141-161.
    Lienhard, J. H. (1966). Synopsis of lift, drag, and vortex frequency data for rigid circular cylinders (Vol. 300): Technical Extension Service, Washington State University Pullman, WA.
    Lim H. C. and Lee S. J. (2002). Flow Control of Circular Cylinders with Longitudinal Grooved Surfaces. AIAA Journal, 40, 10.
    Lumley, J. L. (1967). The structure of inhomogeneous turbulent flows. Atmospheric turbulence and radio wave propagation.
    Ma, X., Karamanos, G.-S., & Karniadakis, G. (2000). Dynamics and low-dimensionality of a turbulent near wake. Journal of fluid mechanics, 410, 29-65.
    Melissa C. Brindise & Pavlos P. Vlachos (2017) Proper orthogonal decomposition truncation method for data denoising and order reduction.
    Melling, A. (1997). Tracer particles and seeding for particle image velocimetry. Measurement science and technology, 8(12), 1406.
    Michael J. S & Dana H. B. (1991). Color indexing. Journal of Computer Vision. 7:1, 11-32.
    Millerg. D. & Williamson, C. H. K. (1994) Control of three-dimensional phase dynamics in a cylinder wake. Experiments in Fluids, 18, 26-35.
    Morkovin, M. (1964). Flow around circular cylinders-a kaleidoscope of challenging fluid phenomena. Paper presented at the Proc. ASME Symp. on Fully Separated Flow, Philadelphia.
    Ong L. and Wallace J. (1996). The velocity field of the turbulent very wake of circular cylinder. Experiments in Fluids, 20, 441-453.
    Parthasarathy, R., & Faeth, G. (1990). Turbulence modulation in homogeneous dilute particle-laden flows. Journal of fluid mechanics, 220, 485-514.
    Pearson, K. (1901). Principal components analysis. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 6(2), 559.
    Perrin R., Cid E., Cazin S., Sevrain A., Braza M., Moradei F. & Harran G. (2007 a). Phase averaged measurements of the turbulence properties in the near wake of a circular cylinder at high Reynolds number by 2C-PIV and 3C-PIV. Experiments in Fluids, 42, 93-109.
    Perrin, R., Braza, M., Cid, E., Cazin, S., Barthet, A., Sevrain, A., Mockett, C. & Thiele, F. (2007 b). Obtaining phase averaged turbulence properties in the near wake of a circular cylinder at high Reynolds number using POD. Experiments in Fluids, 43(2-3), 341-355.
    Raffel, M., Willert, C. E., Scarano, F., Kähler, C. J., Wereley, S. T., & Kompenhans, J. (2007). Particle image velocimetry: a practical guide: Springer.
    Reynolds, W., & Hussain, A. (1972). The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. Journal of fluid mechanics, 54(2), 263-288.
    Rosenfeld ,A.,and A. C. Kak ,(1976),Digital Picture Processing ,Vol. 1,Academic Press ,New York.
    Roshko, Anatol (1954) On the Development of Turbulent Wakes from Vortex Streets. National Advisory Committee for Aeronautics , Washington, D. C
    Roshko, Anatol. (1955). On the wake and drag of bluff bodies. Journal of the aeronautical sciences, 22(2), 124-132.
    Scarano F. and Poelma C. (2009). Three-dimensional vorticity patterns of cylinder wakes. Experiments in Fluids, 47, 69-83
    Schlichting, H. (1979). Boundary Layer Theory, McGraw-Hill, New York, 1979. FIGURE CAPTIONS solid curve displays the exact solution. The difference between the exact solution and the eighth QLM iteration for all t in the figure is less than, 10-10.
    Shannon, C. E. (1949). Communication in the Presence of Noise. Proceedings of the IRE, 37(1), 10-21.
    Sirovich, L. (1987). Turbulence and the dynamics of coherent structures. I. Coherent structures. Quarterly of applied mathematics, 45(3), 561-571.
    Strouhal, V. (1878) (On an unusual sort of sound excitation), Annalen der Physik und Chemie, 3rd series, 5 (10) : 216-251
    Talamelli, A., Westin, K., & Alfredsson, P. H. (2000). An experimental investigation of the response of hot-wire X-probes in shear flows. Experiments in Fluids, 28(5), 425-435.
    Tang, S., Djenidi, L., Antonia, R., & Zhou, Y. (2015). Comparison between velocity-and vorticity-based POD methods in a turbulent wake. Experiments in Fluids, 56(8), 169.
    Tennekes, H., Lumley, J. L., & Lumley, J. L. (1972). A first course in turbulence: MIT press.
    Tennekes, H. (1975). Eulerian and Lagrangian time microscales in isotropic turbulence. Journal of Fluid Mechanics, 67(3), 561-567.
    Theofanous, T., & Sullivan, J. (1982). Turbulence in two-phase dispersed flows. Journal of fluid mechanics, 116, 343-362.
    Townsend, A.A. (1956) The Structure of Turbulent Shear Flow. 2nd Edition, Cambridge University Press.
    Tomboulideas, G., Triantafyllogu, S. & Karniadakgis, E. (1992) A new mechanism of period doubling in free shear flows. Physics of Fluids, A 4, 1329-1332.
    Uberoi, M. S., & Freymuth, P. (1969). Spectra of turbulence in wakes behind circular cylinders. Physics of Fluids, 12(7), 1359-1363.
    Van Oudheusden, B., Scarano, F., Van Hinsberg, N., & Watt, D. (2005). Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Experiments in Fluids, 39(1), 86-98.
    Varun Gandhi; Duncan B. Bryant; Scott A. Socolofsky, M.ASCE;Thorsten Stoesser, M.ASCE; and Jae-Hong Kim, M.ASCE (2015) Concentration-Based Decomposition of the Flow around a Confined Cylinder in a UV Disinfection Reactor.
    Wei, T., & Smith, C. (1986). Secondary vortices in the wake of circular cylinders. Journal of fluid mechanics, 169, 513-533.
    Westerweel, J. (1997). Fundamentals of digital particle image velocimetry. Measurement science and technology, 8(12), 1379.
    Williamson, C. H.K. (1988) The existence of two stages in the transition to three-dimensionality of a cylinder wake. Physics of Fluids, 31, 3165-3168.
    Williamson, C. H. K. (1992). The natural and forced formation of spot-like ‘vortex dislocations’ in the transition of a wake. Journal of fluid mechanics, 243, 393-441.
    Williamson, C. H. K (1996 A). Vortex dynamics in the cylinder wake. Journal of fluid mechanics, 28, 477-593.
    Williamson, C. H. K (1996 B). Three-dimenssional wake transition. Journal of fluid mechanics, 328, 345-407
    Winant, C., & Browand, F. (1974). Vortex pairing : The mechanism of turbulent mixing-layer growth at moderate Reynolds number. Journal of Fluid Mechanics, 63(2), 237-255
    Wu, J., Sheridan, J., Welsh, M., Hourigan, K., & Thompson, M. (1994 a). Longitudinal vortex structures in a cylinder wake. Physics of Fluids, 6(9), 2883-2885.
    Wu, J. and Sheridan, J. (1994 b). An experimental investigation of streamwise vortices in the wake of a bluff body. Journal of Fluids and Structures, 8, 621-625.
    Wu, J., Sheridan, J., Welsh, M., & Hourigan, K. (1996) Three-dimensional vortex structures in a cylinder wake. Journal of Fluid Mechanics, 312, 201-222.
    Zdravkovich, M.M. (1997) Flow around Circular Cylinders. Fundamentals, Vol. 1, Oxford University Press, Oxford, Chapter 6.
    Zhang, Q., Liu, Y., & Wang, S. (2014). The identification of coherent structures using proper orthogonal decomposition and dynamic mode decomposition. Journal of Fluids and Structures, 49, 53-72.
    Zhao M., Thapa J., Cheng L., and ZhouT. (2013). Three-dimensional transition of vortex shedding flow around a circular cylinder at right and oblique attacks. Physics of Fluids, 25(1).
    石昌隆. (2015). 圓柱紊態流場之技術探討. 台灣, 成功大學航空太空工程學系碩士學位論文, 1-108.
    朱家駿. (2020) 相干性結構在紊流尾流的演進, 台灣, 成功大學航空太空工程學系碩士學位論文1-107
    沈家緯. (2018). 以粒子影像測速儀與熱線測速儀所得數據進行圓柱近域尾流之紊態流場特性及尺度分析. 台灣, 成功大學航空太空工程學系碩士學位論文, 1-164.
    林子勛. (2021) 以正交特徵分解法進行圓柱近域紊態場參數分析, 台灣, 成功大學航空太空工程學系碩士學位論文1-241
    施柏帆. (2013). PIV 應用於紊流場之定量量測與誤差分析. 台灣, 成功大學航空太空工程學系碩士學位論文, 1-119.
    陳威呈. (2018). 發展以PIV量測兩相流場之速度分佈技術. 台灣, 成功大學航空太空工程學系博士學位論文, 1-142.
    黃柏翔. (2019). 藉由粒子影像測速及正交特徵分解辨認近域尾流之大尺度相干性結構. 台灣,成功大學航空太空工程學系碩士學位論文, 1-111.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE