| 研究生: |
張順仲 Chang, Shun-Chung |
|---|---|
| 論文名稱: |
以修復型診斷架構應用於區分具測試等效性之定值錯誤 Distinguishing Test-Equivalent Stuck-at Faults Based on Repair-for-Diagnosis Architecture |
| 指導教授: |
李昆忠
Lee, Kuen-Jong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 錯誤診斷 、邏輯修復 、多重定值錯誤 、測試等效性 |
| 外文關鍵詞: | Fault diagnosis, Logic repair, Multiple stuck-at faults, Test-equivalence |
| 相關次數: | 點閱:71 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
一個好的診斷方法須準確地提供錯誤可能存在的位置,然而,在診斷多重錯誤時卻不容易做到。往往在針對一個含有多重錯誤的元件進行診斷後,大量的錯誤會被識別為錯誤候選人,其中包含著許多與實際錯誤存在測試等效性的錯誤,診斷分辨率因而受到了限制。本論文提出了一個基於掃描鏈且二維的修復型診斷架構,透過修復邏輯的方式,將具有測試等效性的錯誤彼此區分開。我們針對每一個目標錯誤加入可修復的設計,而所有的可修復設計由兩條額外的掃描鏈控制。利用所提出的診斷架構,我們能夠藉由輸入適當的控制資料進掃描鏈中,將特定的錯誤修復。透過在幾種組合的控制資料下應用測試向量,我們能夠基於所獲得的錯誤響應,將測試等效性的錯誤彼此區分開並找出其中實際的錯誤。實驗於ISCAS’89基準電路的結果顯示出我們所提出的方法應用於改善多重定值錯誤的診斷分辨率的效能。
A good diagnosis method should provide a few but most likely candidate locations of faults. However it is difficult to achieve when diagnosing multiple faults. Sometimes a large set of candidate faults is provided after applying a diagnosis procedure to a faulty unit that contains multiple faults. Such a set includes many candidates which are not actual faults but are test-equivalent to the actual faults. Diagnostic resolution is thus limited. This thesis proposes a scan-based two-dimensional repair-for-diagnosis architecture that can distinguish the faults which are mutually test-equivalent by means of logic repair. We add a repairable design for each of the targeted faults. All repairable designs are controlled by two additional scan chains. With this architecture, we can repair the specific faults by shifting the appropriate control data into the two scan chains. By applying tests under several combinations of control data, we can easily identify an actual fault from a set of test-equivalent faults based on the captured faulty responses. Experimental results on ISCAS’89 benchmark circuits demonstrate the efficacy of the proposed method to improve the resolution of diagnosing multiple stuck-at faults.
[1] N. Jha, and S. Gupta, Testing of Digital Systems. Cambridge, U.K.: Cambridge Univ. Press, 2003.
[2] J. P. Anita, and P. T Vanathi, “Multiple fault diagnosis with improved diagnosis resolution for VLSI circuits,” Second Int. Conf. on Computing, Communication and Networking Technologies, pp. 1-6, Jul. 2010.
[3] P. H. Chen, C. L. Lee, J. Y. Chen, P. W. Chen, and C. M. Li, “Physical-aware diagnosis of multiple interconnect defects,” in Proc. ITC-Asia, pp. 40-45, Sep. 2017.
[4] S. Kundu, A. Jha, S. Chattopadhyay, I. Sengupta, and R. Kapur, “Framework for multiple-fault diagnosis based on multiple fault simulation using particle swarm optimization,” IEEE Trans. VLSI Syst., vol. 22, no. 3, pp. 696-700, Mar. 2014.
[5] M. J. Tsai, C. T. Chao, J. Y. Jou, and M. C. Wu, “Multiple-fault diagnosis using faulty-region identification,” IEEE VLSI Test Symp., pp. 123-128, May 2009.
[6] Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, “Multiple fault diagnosis using n-detection tests,” in Proc. Int. Conf. on Compu. Des., pp. 198-201, Oct. 2003.
[7] Z. Wang, M. Marek-Sadowska, K. H. Tsai, and J. Rajski, “Analysis and methodology for multiple-fault diagnosis,” IEEE Trans. Comput.-Aided Des., vol. 25, no. 3, pp. 558-575, Mar. 2006.
[8] X. Tang, W. T. Cheng, R. Guo, H. Tang, and S. M. Reddy, “Diagnosis of multiple faults based on fault-tuple equivalence tree,” IEEE Int. Symp. on Defect and Fault Tolerance in VLSI and Nanotechnology Syst., pp. 217-225, Oct. 2011.
[9] Y. C. Lin, F. Lu, and K. T. Cheng, “Multiple-fault diagnosis based on adaptive diagnostic test pattern generation,” IEEE Trans. Comput.-Aided Des., vol. 26, no. 5, pp. 932-942, May 2007.
[10] J. Ye, Y. Hu, and X. Li, “Diagnosis of multiple arbitrary faults with mask and reinforcement effect,” in Proc. Des., Autom. Test in Europe, pp. 885-890, Mar. 2010.
[11] X. Yu, and R. D. Blanton, “An effective and flexible multiple defect diagnosis methodology using error propagation analysis,” in Proc. IEEE Int. Test Conf., pp. 1-9, Oct. 2008.
[12] S. Kundu, S. Chattopadhyay, I. Sengupta, and R. Kapur, “Multiple fault diagnosis based on multiple fault simulation using particle swarm optimization,” in Proc. 24th Int. Conf. VLSI Des., pp. 364-369, Jan. 2011.
[13] S. L. Lin, C. H. Wu, and K. J. Lee, “Repairable cell-based chip design for simultaneous yield enhancement and fault diagnosis,” in Proc. IEEE 25th Asian Test Symp., pp. 25-30, Nov. 2016.
[14] J. H. Patel, “Stuck-at fault: a fault model for the next millennium,” in Proc. IEEE Int. Test Conf., pp. 1166-1169, Oct. 1998.
[15] E. J. McCluskey, and F. W. Clegg, “Fault equivalence in combinational logic networks,” IEEE Trans. on Comput., vol. C-20, no. 11, pp. 1286-1293, Nov. 1971.
[16] M. E. Amyeen, W. K. Fuchs, I. Pomeranz, and V. Boppana, “Fault equivalence identification in combinational circuits using implication and evaluation techniques,” IEEE Trans. on Comput.-Aided Des. of Integr. Circuits and Syst., vol. 22, no.7, pp. 922-936, July 2003.
校內:2021-01-22公開