簡易檢索 / 詳目顯示

研究生: 陳俊樺
Chen, Chun-Hwa
論文名稱: 抗菌胜肽Maximin H5結構的研究
Structural study of antimicrobial peptide Maximin H5
指導教授: 鄭梅芬
none
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 67
中文關鍵詞: 二維核磁共振,蛋白質結構,抗菌胜肽
外文關鍵詞: 2D NMR, antimicrobial peptides, maximin H5
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 兩棲類的皮膚分泌物富含抗菌蛋白,為遭遇微生物的侵襲時的第一道防線。本論文研究的抗菌蛋白,Maximin H5,是來自於Bombina maxima(大蹼蟾蜍)的皮膚分泌物。從過去的文獻得知,Maximin H5是由大蹼蟾蜍的皮膚的先驅蛋白質,經由後轉譯修飾作用所切割出的一段新胜肽。分析其氨基酸組成,發現它包含三個酸性Asp氨基酸但不含任何鹼性氨基酸,而且似乎僅對革蘭氏陽性菌有抗菌的效果。
    至今,酸性抗菌胜肽被發現的很少,對於它的蛋白質三度結構與抗菌機制的相關性了解得不多。本論文,即針對酸性胜肽之一的Maximin H5進行三度空間結構之探討,我們利用核磁共振光譜和結構計算法,來決定Maximin H5之三度空間結構,並針對其結構特性推衍其作用機制。
    從化學位移指標預測其二級結構的結果來看,其結構在C-端有helix的結構,但運算所得的三度空間結構並無明顯的helix存在;另外從表面電荷分析圖顯示,Maximin H5不像一般的鹼性抗菌胜肽具兩性結構;加上它帶負電荷的特性,不易親近細菌外膜。綜合以上之結果,推測其抗菌功能不是直接作用在細菌外膜上。

    Amphibian skin is a rich resource of antimicrobial peptides, serves as the first line of defense of creatures attacked by microbes. The antimicrobial peptide studied here is an antimicrobial peptide from skin secretion of toad, Bombina maxima. It is a novel maximin H peptide which is produced through posttranslational modification of a precursor protein, and was named Maximin H5.
    By analyzing the composition of amino acids, it contains three acidic aspartates, but has no basic amino acids. Based on the previous study, it seemed to be sensitive only to Gram positive bacteria. So far, few acidic antimicrobial peptides were found and little was known about their three-dimensional structures and mechanisms of killing microbes. In order to understand the structure-function relationship of maximin H5, we used NMR spectroscopy and structure calculation techniques to determine its three-dimensional structure and elucidate the bactericidal mechanism from the characteristics of three-dimensional structure.
    Estimated the secondary structures from the chemical shift index, we found maximin H5 seemed to have helical structure at C-terminal region, but there is no obvious helical structure existed based on the calculated structure. Moreover, the surface charge of maximin H5 distribution graph showed that there is no amphipathic structure existed. In addition, its overall negative charge made it hard to attach to bacterial membrane. In conclusion, we propose the bactericidal mechanism of maximin H5 may not directly interact with the membrane of bacteria.

    中文摘要--------------------------------------------------------------------- I 英文摘要--------------------------------------------------------------------- II 致謝--------------------------------------------------------------------------- III 目錄--------------------------------------------------------------------------- IV 圖目錄------------------------------------------------------------------------ VI 表目錄------------------------------------------------------------------------ VII 附錄--------------------------------------------------------------------------- VIII 縮寫檢索表------------------------------------------------------------------ IX 第一章 研究主題背景----------------------------------------------------- 1 1-1抗微生物胜肽的簡介----------------------------------------------- 1 1-2 Maximin H5的特性和功能--------------------------------------- 5 1-3核磁共振光譜的介紹----------------------------------------------- 7 1-4 研究動機和目的----------------------------------------------------- 15 第二章 研究材料及方法-------------------------------------------------- 18 2-1 樣品來源-------------------------------------------------------------- 18 2-2 抗菌活性測試-------------------------------------------------------- 18 2-3 NMR光譜測定------------------------------------------------------- 19 2-4 以2D核磁共振光譜研究maximin H5的三級結構----------- 19 (一)1H核化學位移和自旋系統(spin system)的判定-------------- 19 (二)結構運算的距離限制條件(NOE distance constraints)------ 21 (三)結構的計算-------------------------------------------------------- 22 (四)三度空間結構的重疊(alignment)-------------------------- 23 第三章 實驗結果----------------------------------------------------------- 26 3-1 maximin H5抗菌活性測試---------------------------------------- 26 3-2 maximin H5的NMR圖譜分析----------------------------------- 26 第四章 討論----------------------------------------------------------------- 31 (一)maximin H5的抗菌活性---------------------------------------- 31 (二)maximin H5的結構分析---------------------------------------- 33 (三)maximin H5的三度空間結構和抗菌活性的關係---------- 34 第五章 結論--------------------------------------------------------------- 37 參考文獻--------------------------------------------------------------------- 38 圖------------------------------------------------------------------------------ 44 表------------------------------------------------------------------------------ 54 附錄--------------------------------------------------------------------------- 56 自述--------------------------------------------------------------------------- 67 圖目錄 圖一 maximin H5的DQF-COSY圖譜----------------------------------- 44 圖二 maximin H5的TOCSY圖譜---------------------------------------- 45 圖三 maximin H5的NOESY圖譜---------------------------------------- 46 圖四 maximin H5 NOESY圖譜的循序判定-------------------------- 47 圖五 maximin H5抗菌活性的測試------------------------------------- 48 圖六 maximin H5的CαH及HN化學位移指標圖------------------- 49 圖七 maximin H5的連續序列(i, i+1)和中距離(i, i+2~i+4)NOEs 的連結情形----------------------------------------------------------- 50 圖八 四個最佳結構的重疊圖-------------------------------------------- 51 圖九 maximin H5的Ramachandran分析圖--------------------------- 52 圖十 maximin H5的表面電荷分布圖---------------------------------- 53 表目錄 表一 maximin H5的1H 化學位移表(240 mM SDS, pH 6.62)----- 54 表二 maximin H5的結構運算統計表------------------------------------- 55 附錄 附圖一 Shai-Matsuzaki-Huang(SMH)的抗菌機制------------------- 56 附圖二 TOCSY光譜中各個氨基酸的α、β、γ等氫原子的位置可 由COSY光譜判別------------------------------------------------ 57 附圖三 以NMR光譜法決定蛋白結構之流程圖--------------------- 58 附圖四 抗菌胜肽對多細胞生物及原核生物細胞膜的作用-------- 59 附圖五 在不同二級結構下,短和中距離的1H之間NOE連結 情形及二級結構的自旋-自旋偶合常數3JNHα-------------- 60 附表一 抗微生物胜肽的結構分類-------------------------------------- 61 附表二 抗菌胜肽在細胞內的抗菌機制-------------------------------- 62 附表三 已經發展成疾病治療藥物的抗菌胜肽----------------------- 63 附表四 抗菌胜肽maximin H5的抗菌活性---------------------------- 64 附表五 各氨基酸在random coil結構時,氫質子之化學位移表-- 65 附表六 α-helix和β-strand結構中HN、CαH的化學位指標的標 準值----------------------------------------------------------------- 66

    Bierbaum, G. and Sahl, H. G. Induction of autolysis of Staphylocci by the basic peptide antibiotics pep5 and nisin and their influence on the activity of autolytic enzymes. Arch. Microbiol. 141, 249-254, 1985.

    Brogden, K. A., De Lucca, A. J., Bland, J., and Elliott, S. Isolation of an ovine pulmonary surfactant-associated anionic peptide bactericidal for Pasteurella haemolytica. Proc. Natl. Acad. Sci. USA. 93(1), 412-416. 1996.

    Breukink, E., Wiedemann, I., van Kraaij, C., Kuipers, O. P., Sahl, H., de Kruijff, B. Use of the cell wall precursor lipid II by a pore-forming peptide antibiotic. Science, 286, 2361–2364. 1999.

    Brogden K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nature microbiology 3, 238-250, 2005.

    Boman, H. G., Agerberth, B. and Boman, A. Mechanisms of action on Escherichia coli of cecropin P1 and PR-39, two antibacterial peptides from pig intestine. Infect. Immun. 61, 2978–2984, 1993.

    Boman, H. G. Antibacterial peptides: basic facts and emerging concepts. J Intern Med. 254(3), 197-215, 2003.

    Epand, R. M., and Vogel, H. J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim Biophys Acta. 1462(1-2), 11-28, 1999.

    Ganz, T., Selsted, M. E., Szklarek, D., Harwig, S. S., Daher, K., Bainton, D. F., and Lehrer, R. I. Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest. 76(4), 1427-1435. 1985.

    Ganz, T. Antimicrobial polypeptides. J Leukoc Biol. 75, 34-38, 2004.

    Hultmark, D., Steiner, H., Rasmuson, T., and Boman, H. G. Insect immunity. Purification and properties of three inducible bactericidal proteins from hemolymph of immunized pupae of Hyalophora cecropia. Eur J Biochem. 106(1), 7-16, 1980.

    Hancock, R. E. W. and Chapple, D. S. Peptide antibiotics. Antimicrobial agents and chemotherapy 43, 1317–1323, 1999.

    Kragol, G., Lovas, S., Varadi, Gy., Condie, B.A., Hoffmann, R., and Otvos Jr., L. The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding. Biochemistry 40, 3016-3026, 2001.

    Kalfa, V. C., Kalfa, V. C., Jia, H. P., Kunkle, R. A., McCray, P. B. Jr, Tack B. F., Brogden, K. A. Congeners of SMAP29 kill ovine pathogens and induce ultrastructural damage in bacterial cells. Antimicrob. Agents Chemother. 45, 3256–3261, 2001.

    Koradi, R., Billeter, M. and Wüthrich, K. MOLMOL: a program for display and analysis of macromolecular structures. J. Mol. Graph. 14, 51–55, 1996.

    Kieffer, B., Dillmann, B., Lefevre, J. F., Goumon, Y., Aunis, D., and Metz-Boutigue, M. H. Solution conformation of the synthetic bovine proenkephalin-A209-237 by 1H NMR spectroscopy. J. Biol. Chem. 273(50), 33517-33523, 1998.

    Ladokhin, A. S., Selsted, M. E., and White, S. H. Sizing membrane pores in lipid vesicles by leakage of coencapsulated markers: pore formation by melittin. Biophys. J. 72, 1762–1766, 1997.

    Lai, R., Liu, H., Hui Lee, W., and Zhang, Y. An anionic antimicrobial peptide from toad Bombina maxima. Biochem. Biophys. Res. Commun. 295(4), 796-799, 2002.

    Lai, R., Zheng, Y. T., Shen, J. H., Liu, G. J., Liu, H., Lee, W. H., Tang, S. Z., and Zhang, Y. Antimicrobial peptides from skin secretions of Chinese red belly toad Bombina maxima. Peptides 23(3), 427-435, 2002.

    Lehrer, R. I., Barton, A., Daher, K. A., Harwig, S. S., Ganz, T., Selsted, M. E. Interaction of human defensins with Escherichia coli. Mechanism of bactericidal activity. J. Clin. Invest. 84, 553–561, 1989.

    Lee, W. H., Li, Y., Lai, R., Li, S., Zhang, Y., and Wang, W. Variety of antimicrobial peptides in the Bombina maxima toad and evidence of their rapid diversification. Eur J Immunol. 35(4), 1220-1229, 2005.

    Miele, R., Borro, M., Fiocco, D., Barra, D., and Simmaco, M., Sequence of a gene from Bombina orientalis coding for the antimicrobial peptide BLP-7. Peptides 21, 1681–1686, 2000.

    Meyerholz, D. K. and Ackermann, M. R. Antimicrobial peptides and surfactant proteins in ruminant respiratory tract disease. Vet. Immunol. Immunopathol. 108(1-2), 91-96, 2005.

    Park, C. B., Kim, H. S. and Kim, S. C. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244, 253–257, 1998.

    Park, C. B., Yi, K. S., Matsuzaki, K., Kim, M. S. and Kim, S. C. Structure–activity analysis of buforin II, a histone-H2A derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl Acad. Sci. USA 97, 8245–8250, 2000.

    Park, S. H., Kim, H. E., Kim, C. M., Yun, H. J., Choi, E. C. and Lee, B. J. Role of proline, cysteine and a disulphide bridge in the structure and activity of the anti-microbial peptide gaegurin 5. Biochem. J. 368, 171-182, 2002.

    Patrzykat, A., Friedrich, C. L., Zhang, L., Mendoza, V. and Hancock, R.E. Sublethal concentrations of pleurocidin derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli. Antimicrob. Agents Chemother. 46, 605–614, 2002.

    Powers, J. P. and Hancock, R. E. The relationship between peptide structure and antibacterial activity. Peptides 24(11), 1681-1691, 2003.

    Richter, S. Wolfgang Pauli and the origin of the spin-concept. Gesnerus. 33(3-4), 253-270, 1976.

    Roder, B. L., Wandall, D. A., Frimodt-Moller, N., Espersen, F., Skinhoj, P. and Rosdahl, V. T. Clinical features of Staphylococcus aureus endocarditis: a 10-year experience in Denmark. Arch Intern Med. 159(5), 462-9, 1999.

    Shampo, M. A. and Kyle, R. A. Edward M. Purcell--Nobel Prize for magnetic resonance imaging. Mayo Clin Proc. 72(6), p.585, 1997.

    Subbalakshmi, C. and Sitaram, N. Mechanism of antimicrobial action of indolicidin. FEMS Microbiol. Lett. 160, 91–96, 1998.

    Simmaco, M., Mignogna, G., and Barra, D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers 47, 435–450, 1999.

    Sieradzki, K., Roberts, R. B., Haber, S. W., and Tomasz, A. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. N. Engl. J. Med. 340, 517-523. 1999.

    Schittek, B., Hipfel, R., Sauer, B., Bauer, J., Kalbacher, H., Stevanovic, S., Schirle, M., Schroeder, K., Blin, N., Meier, F., Rassner, G., and Garbe, C. Dermcidin: a novel human antibiotic peptide secreted by sweat glands. Nature Immunol. 2, 1133–1137, 2001.

    Shai, Y. Mode of action of membrane active antimicrobial peptides. Biopolymers 66, 236–248, 2002.

    Vizioli, J., and Salzet, M. Antimicrobial peptides from animals: focus on invertebrates. Trends Pharmacol. Sci. 23, 494-496, 2002.

    Wüthrich, K. NMR of proteins and nucleic acids. Wiley-Interscience Publish. Switzerland. 1986.

    Wüthrich, K. The way to NMR structures of proteins. Nature Structural Biology 8, 923-925, 2001.

    Won, H. S., Kim, S. S., Jung, S. J., Son, W. S., Lee, B., and Lee, B. J. Structure-activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. Mol. Cells 17(3), 469-476, 2004.

    Yang, L., Weiss, T. M., Lehrer, R. I. and Huang, H. W. Crystallization of antimicrobial pores in membranes: magainin and protegrin. Biophys. J. 79, 2002-2009, 2000.

    Yonezawa, A., Kuwahara, J., Fujii, N. and Sugiura, Y. Binding of tachyplesin I to DNA revealed by footprinting analysis: significant contribution of secondary structure to DNA binding and implication for biological action. Biochemistry 31, 2998–3004, 1992.

    Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415(24), 389-395, 2002.

    McMurry著,方偉平等人譯,有機化學(Fundamentals of Organic Chemistry),高立圖書有限公司,457-474,2003。

    王介民,Lactoferricin II 立體結構之研究。國立成功大學理學院生物科技研究所碩士論文,2002。

    張家萌,α1-antitrypsin-derived C-terminal peptide (C 36)之結構研究。國立成功大學理學院生物科技研究所碩士論文,2003。

    吳佳星,抗菌胜肽Parasin I結構及活性的分析。國立成功大學理學院生物科技研究所碩士論文,2006。

    陳金榜,蛋白質在水溶液中之結構–多維異核核磁共振之應用。科儀新知第十五卷,第六期,40-46,1994。

    黃太煌,利用核磁共振光譜學探討蛋白質的結構、動性及功能。物理雙月刊 第二十四卷,第三期,403-412,2001。

    何國榮,分析蛋白質的利器。科學月刊,卷期396,1037-1041,2002。

    鄭梅芬,核磁共振光譜餘結構基因體之應用-蛋白質結構之鑑定。Chemistry (The Chinese Chem. Soc., Taipei) 第六十一卷,第二期,267-276,2003。

    下載圖示 校內:2007-09-13公開
    校外:2007-09-13公開
    QR CODE