簡易檢索 / 詳目顯示

研究生: 林煥儒
Lin, Huan-Ru
論文名稱: 應用於數位助聽器之符合近似ANSI S1.11規格且低群延遲與低運算量濾波器組設計及硬體實現
Low-Group-Delay and Low-Complexity Algorithm Design and Hardware Implementation of 18-Band Quasi-ANSI S1.11 1/3 Octave Filter Bank for Digital Hearing Aids
指導教授: 雷曉方
Lei, Sheau-Fang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 79
中文關鍵詞: ANSI S1.11濾波器組離散餘弦轉換調變數位助聽器
外文關鍵詞: ANSI S1.11, filterbank, discrete cosine transform modulation, digital hearing aids
相關次數: 點閱:154下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文針對近似ANSI S1.11 Class-2規格,提出設計18個頻帶濾波器組的演算法及硬體實現架構。濾波器組設計流程主要分為幾部分:(1)使用1組低通濾波器搭配9次離散餘弦調變,產生9個頻帶的等頻寬濾波器組;(2)將FIR架構中的延遲單元替換成全通濾波器,使等頻寬濾波器組變成非等頻寬濾波器組,調整參數使其符合規格的頻帶31至39;(3)套用多速率架構,使用頻帶31至39濾波器組架構,只透過調整輸入訊號取樣頻率來濾出頻帶22至30;(4)針對係數重複性將輸入摺疊,並改良M值選擇,進一步降低運算量。
    在硬體設計方面,將每個區塊分別做位元數分析,減低硬體成本,並且將各區塊運算管線化,大幅降低即時化時脈速率。硬體電路實現於FPGA開發版,並使用板子上的CPU進行軟硬體整合驗證。
    與近年的Liu et al.文獻做比較,本論文每個取樣點的乘法降低59%,加法降低16%,係數量更大幅降低78%,匹配誤差以及電路即時化速率也落在差不多量級。整體而言,本論文提出之濾波器組具備低群延遲、低運算量及低即時化時脈速率,與助聽器的設計取向契合,適合應用於助聽輔具中。

    This thesis presents an algorithm design and hardware implementation for 18-band quasi-class-2 ANSI S1.111/3 octave filterbank, which achieves low computational complexity and group delay. The develoging technique of this thesis is summarized as follows: 1) integrate a prototype low-pass filter and discrete cosine transform modulation to realize a 9-band uniform filterbank; 2)replace all z-1 elements of FIR by all-pass filters to abtain an non-uniform filterbank, which meet the band 31-39 of ANSI spec; 3)apply multi-rate structure to filter band 22-30, which use the same filterbank structure with band 31-39 but alternate the sampling rate of input signal; 4)reduce the computational complexity by coefficient repeatability and improvement of DCT length “M” selection. The proposed analysis filter bank was implemented at FPGA, the wordlength of each block was analyzed separately to lower the hardware cost, and applied pipelined scheduling to reduce operating cycle. Integrate the CPU of FPGA with our circuit to verify the accuracy. Compare with the researchs of recent years, this thesis present a good performance of group delay, computation complexity and real-time clock rate, which is suitable for the application of digital hearing aids.

    中文摘要 I EXTENDED ABSTRACT III 誌謝 IX 目錄 XI 表目錄 XV 圖目錄 XVII 第一章 緒論 1 1.1. 研究背景 1 1.2. ANSI S1.11規格介紹 2 1.3. 近似ANSI Class-2規格介紹 4 1.4. 研究動機 5 1.5. 論文章節組織 5 第二章 既有演算法分析與介紹 7 2.1. Kuo et al. 所提出之濾波器組設計方法 7 2.1.1. 以平行方式設計濾波器組 7 2.1.2. 以多速率架構設計濾波器組 7 2.1.3. 文獻探討 8 2.2. Liu et al. 所提出之濾波器組設計方法 9 2.2.1. 演算法介紹 9 2.2.2. 文獻探討 11 2.3. Yang et al. 所提出之濾波器組設計方法 12 2.3.1. 演算法介紹 12 2.3.2. 文獻探討 15 第三章 符合ANSI規格之非等頻寬濾波器組演算法設計流程 17 3.1. 非等頻寬濾波器組架構 17 3.2. 符合規格濾波器組之設計與參數設定 20 3.2.1. 全通濾波器之a值設定 20 3.2.2. 低通濾波器之設計 24 3.2.3. 離散餘弦轉換M值分析 27 3.2.4. 多速率架構之低通濾波器D與I設計 32 3.3. 運算複雜度與係數量優化 33 3.3.1. 低通輸入訊號折疊 33 3.3.2. 離散餘弦轉換輸入摺疊 34 3.3.3. 遞迴離散餘弦轉換推導 41 3.4. 餘弦轉換M值之選定與餘弦輸入再摺疊 43 3.4.1 離散餘弦轉換長度M值之選定 43 3.4.2 離散餘弦轉換輸入再折疊 46 3.4.3 摺疊策略之評估比較 49 第四章 硬體實現與時序規劃 51 4.1. 演算法架構與硬體電路對應 51 4.1.1 全通濾波器電路架構 52 4.1.2 低通濾波器電路架構 54 4.1.3 餘弦輸入摺疊電路架構 54 4.1.4 遞迴離散餘弦轉換電路架構 54 4.2. 硬體時序安排 56 4.3. 位元數分析 59 4.4. FPGA電路實現 63 第五章 本論文與相關文獻分析比較結果 65 5.1. 乘法運算量計算 65 5.2. 加法運算量計算 66 5.3. 群延遲計算 67 5.4. 匹配誤差計算 68 5.5. 相關文獻比較結果 72 5.5.1. 運算量與群延遲比較 72 5.5.2. 匹配誤差比較 73 5.5.3. 硬體數據比較 74 5.5.4. 綜合論述 76 第六章 結論與未來展望 77 參考文獻 79

    [1] 身心障礙人數表,衛生福利部社會及家庭署統計處. http://www.mohw.gov.tw/cht/DOS/Statistic.aspx?f_list_no=312&fod_list_no=4198
    [2] Specification for Octave-Band and Fractional-Octave-Band Analog and Digital Filters, ANSI Standard S1.11-2004.
    [3] H. Haas, “On the influence of a single echo on the intelligibility of speech,” Acustica, vol. 1, pp. 48–58, 1951.
    [4] Rebecca Herbig, Au.D. “Acceptable Delay in Digital Hearing Aids”, 2009.
    [5] J. Agnew, “An overview of digital signal processing in hearing instruments,” The Hearing Review, July 1997.
    [6] 葉旭輝,“華語各頻帶訊息對語音理解之重要度分析”,台灣,國立陽明大學醫學工程研究所碩士論文, 2005
    [7] C.-H. Lin, K.-C. Chang, M.-H. Chuang and C.-W. Liu, “Design and implementation of 18-band Quasi-ANSI S1.11 1/3 octave filter bank for digital hearing aids,” VLSI Design, Automation, and Test (VLSI-DAT), vol. 23, no. 25, pp. 1-4, April 2012.
    [8] Y.-T. Kuo, T.-J. Lin, Y.-T. Li, and C.-W. Liu, “Design and implementation of low-power ANSI S1.11 filter bank for digital hearing Aids,” IEEE Trans. Circuits Syst. I, vol. 7, pp. 1684-1696, 2010.
    [9] C.-W. Liu, K.-C. Chang, M.-H. Chuang and C.-H. Lin, “10-ms 18-Band Quasi-ANSI S1.11 1/3-Octave Filter Bank for Digital Hearing Aids,” IEEE Tran. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 638-649, 2013.
    [10] C.-Y. Yang, C.-W. Liu, and S.-J. Jou, “An efficient 18-band quasi-ANSI 1/3-octave filter bank using re-sampling method for digital hearing aids,” Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on. IEEE, 2014.
    [11] D. Byrne, H. Dillon, T. Ching, R. Katsch, and G. Keidser, “NAL-NL1 procedure for fitting nonlinear hearing aids: characteristics and compositions with other procedures,” Journal of the American Academy of Audiology, vol. 12, no. 1, pp. 37-54, Jan. 2001.
    [12] www.earinfo.com.
    [13] 劉智豪, “應用於助聽器之符合近似ANSI S1.11規格且低群延遲與低運算量濾波器組設計”,台灣,國立成功大學電機工程研究所碩士論文, 2014

    下載圖示 校內:2020-12-08公開
    校外:2020-12-08公開
    QR CODE