簡易檢索 / 詳目顯示

研究生: 張永郁
Zhang, Yong-Yu
論文名稱: 利用超音波噴塗熱裂解沉積法製備高性能極薄二氧化錫摻雜鎂薄膜電晶體
High Performance of Ultrathin SnO2: Mg Thin Film Transistors Fabricated by Ultrasonic Spray Pyrolysis Deposition Method
指導教授: 許渭州
Hsu, Wei-Chou
共同指導教授: 劉漢胤
Liu, Han-Yin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 88
中文關鍵詞: 二氧化錫摻雜鎂超音波噴塗熱裂解法結晶性主動層主動層快速熱退火氧化層堆疊負閘極照光偏壓測試
外文關鍵詞: SnO2: Mg, Ultrasonic Spray Pyrolysis Deposition, crystalline active layer, RTA at active layer, stacking of oxide layer, negative bias illumination stress test
相關次數: 點閱:72下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以超音波噴塗熱裂解法製備高效能二氧化錫摻雜鎂薄膜電晶體。論文中探討了包含了使用超音波噴塗熱裂解法沉積二氧化錫摻雜鎂薄膜的優勢、摻雜鎂後對二氧化錫內部晶格氧鍵解比例的影響以及主動層薄膜在高溫快速熱退火後內部缺陷的含量變化對薄膜電晶體之電性影響。最後嘗試了以超音波噴塗熱裂解法製作堆疊二氧化鈦和氧化鋁對氧化層與主動層介面品質的影響。共有三種構造在我們的研究中實現與比較。第一種為使用氧化鋁為氧化層和二氧化錫為主動層的結構,轉換特性可達到開關電流比1.79×108、次臨界擺幅203.5mV/dec、臨界電壓1.20V、場效電子遷移率82.8cm2/V-s和負閘極偏壓照光下臨界電壓偏移-1.00V。第二種為使用氧化鋁為氧化層和二氧化錫摻雜鎂作為主動層的結構,轉換特性可達到開關電流比1.46×109、次臨界擺幅173.3 mV/dec、臨界電壓1.15V、場效電子遷移率95.7cm2/V-s和負閘極偏壓照光下臨界電壓偏移-0.45V。第三種為使用二氧化鈦/氧化鋁堆疊成氧化層和二氧化錫摻雜鎂作為主動層的結構,轉換特性可達到開關電流比7.99×108、次臨界擺幅167. 5mV/dec、臨界電壓0.20V、場效電子遷移率130.0cm2/V-s和負閘極偏壓照光下臨界電壓偏移-0.40V。
    鎂摻雜後產生較高的場效電子遷移率、較小次臨界擺幅和負閘極偏壓照光測試下較小的臨界電壓偏移。歸因於鎂有助於增加氧儲存能力,使介面間的缺陷降低,利於高濃度載子有效傳遞,進而使薄膜特性提升。更進一步的加入二氧化鈦堆疊,可以發現特性又有了進一步的提升,歸因於其有效的限制非晶氧化鋁晶粒生長尺寸。與結晶性主動層尺寸的差距變小,介面品質因此有效提升。
    本實驗成功以超音波噴塗熱裂解法製備高性能二氧化錫摻雜鎂薄膜電晶體,此方法沉積出來的薄膜在市場具有極大的競爭力,因為其製程成本低和在非真空環境下進行。在元件電性方面擁有高電子遷移率、常關模式操作(臨界電壓大於0)、高開關電流比及高穩定性等優點,使在下次世代大面積面板產業應用中極具潛力,可望在未來市面上被應用。

    In our thesis, the high-performance magnesium doped tin oxide (SnO2: Mg) thin film transistor are fabricated by ultrasonic spray pyrolysis deposition (USPD) successfully. We investigated including the advantage of USPD method to fabricate SnO2: Mg, the effect of doping magnesium and rapid thermal annealing at active layer. Finally, we have tried stacking oxide layers of TiO2 and Al2O3 to improve interface quality.
    Three kinds of SnO2-based TFTs has been achieved in our work. The first structure consisted of Al2O3 oxide layer and SnO2 active layer exhibits performance with Ion/Ioff of ~108, subthreshold swing (S.S) of 203.5mV/dec, threshold voltage (Vth) of 1.20V, field effect mobility (μFE) of 82.8 cm2/V-s, and Vth shift of -1.00V under negative bias illumination stress (NBIS). The second structure consisted of Al2O3 oxide layer and SnO2: Mg active layer exhibits performance with Ion/Ioff of ~109, S.S of 173.3mV/dec, Vth of 1.15V, μFE of 95.7cm2/V-s, and Vth shift of -0.45V under NBIS. The third structure consisted of TiO2/ Al2O3 stacked oxide layer and SnO2: Mg active layer exhibits performance with Ion/Ioff of ~108, S.S. of 167.5mV/dec, Vth of 0.20V, μFE of 130.0cm2/V-s, and Vth shift of -0.40V under NBIS.
    Higher μFE, smaller S.S. and Vth shift under NBIS produced after doping magnesium. It is attributed that magnesium can increase oxygen storage capacity. The defects between the interface of oxide layer and active layer are reduced, which contributes to the transmission of high-concentration carriers effectively, thereby improving the film properties.
    Furthermore, stacking of the TiO2 reveals a further improvement in DC properties due to its effective limitation of amorphous Al2O3 grain size. The difference from the grain sizes of crystalline active layer and amorphous oxide layer become smaller, and the interface quality is improved effectively.
    In our work, we successfully fabricated the superior performance SnO2: Mg TFTs by USPD method. The films deposited by this method is highly competitive in the market because of its low fabricate cost and non-vacuum environment. In Addition, the SnO2: Mg TFTs is a promising material with high electron mobility, normal-off operation, high Ion/Ioff and high reliability, which has great potential in the next generation of large-area panel industry applications. It is expected to be applied in the future market.

    摘要 i Abstract iii 誌謝 v Content ix Table Captions xi Figure Captions xii Chapter 1 Introduction 1 1-1 Background and Motivation of Research 1 1-2 Ultrasonic Spray Pyrolysis Deposition 5 1-3 Material Property of Tin Oxide 6 1-4 Organization 10 Chapter 2 Material Growth and Devices Fabrication 11 2-1 Device Structure and Fabrication 11 2-1-1 Pre-Cleaning 11 2-1-2 Deposition of Gate Dielectric Layer 12 2-1-3 Deposition of Active Layer 13 2-1-4 Source and Drain Electrodes 13 Chapter 3 Results and Discussion 17 3-1 Material Analysis 17 3-1-1 Grazing Incident X-ray Diffraction 17 3-1-2 Scanning Electron Microscopy 21 3-1-3 X-ray Photoelectron Spectroscopy 24 3-1-4 Photoluminescence 32 3-1-5 Ellipsometry 34 3-1-6 Hall Measurement 37 3-1-7 Ultraviolet-visible-near infrared 38 3-1-8 Transmission Electron Microscopy 41 3-2 Optimization 44 3-2-1 Pre-Cleaning Method 47 3-2-2 Different Thickness of Al2O3 48 3-2-3 Different Thickness of SnO2: Mg 50 3-2-4 Different Spray Temperature of SnO2: Mg 51 3-2-5 Temperature of Rapid Thermal Annealing 53 3-3 DC Electric Characteristics 55 3-3-1 SnO2 TFT (Al2O3 Insulator) 55 3-3-2 SnO2: Mg TFT (Al2O3 Insulator) 60 3-3-3 SnO2: Mg TFT (TiO2/ Al2O3 Stacked) 65 3-4 Stability-Negative Bias Illumination Stress 69 Chapter 4 Conclusion and Future work 78 4-1 Conclusion 78 4-2 Suggestion for Future Work 81 References 82

    [1] J. Yang, R. Fu, Y. Han, T. Meng and Q. Zhang," The stability of tin silicon oxide thin-film transistors with different annealing temperatures," Europhys. Lett., Vol. 115, No.2, p. 28006, August 2016.
    [2] J. H. Ren, K.W. Li, J. W. Yang, D. Lin, H. Q. Kang, J. J. Shao, R. F. Fu and Q. Zhang, "Solution-processed amorphous gallium-tin oxide thin film for low-voltage, high-performance transistors," Sci China Mater., Vol. 62, No. 6, pp. 803-812, June 2019.
    [3] J. W. Yang, Z. Yang, T. Meng, Y. B. Han, X.T. Wang, and Q. Zhang " Effects of silicon doping on the performance of tin oxide thin film transistors," Phys. Status Solidi A, Vol. 213, No. 4, pp. 1010–1015, November 2015.
    [4] J. W. Yang, T. Meng, Z. Yang, C. Cui and Q. Zhang," Investigation of tungsten doped tin oxide thin film transistors," Journal of Physics D: Applied Physics, Vol. 48, p. 438108, October 2015.
    [5] S. B. Hu, K. K. Lu, H. L. Ning, Z. K. Zheng, H. K. Zhang, Z. Q. Fang, R. H. Yao, M. Xu, L. Wang, L. F. Lan, J. B. Peng, and X. B. Lu," High mobility amorphous indium-gallium-zinc-oxide thin-film transistor by aluminum oxide passivation layer," IEEE Electron Device Letters, Vol. 38, No. 7, pp. 879-882, July 2017.
    [6] H. Ji, A. Y. Hwang, C. K. Lee, P. S. Yun, J. U. Bae, K. S. Park, and J. K. Jeong," Improvement in field-effect mobility of indium zinc oxide transistor by titanium
    metal reaction method," IEEE Transactions on Electron Devices, Vol. 62, No. 4, pp. 1195-1199, April 2015.
    [7] W. Hu and R. L. Peterson, " Molybdenum as a contact material in zinc tin oxide thin film transistors," Appl. Phys. Lett., Vol. 104, p. 192105, May 2014.
    [8] D. Shin, K. S. Jang, C. P. T. Nguyen, H. J. Park, J. S. Kim, Y. K. Kim* and J. S. Yi," High field-effect mobility amorphous indium-tin-zinc-oxide thin-film transistor using negatively charged aluminium-oxynitride gate dielectrics," AM-FPD, p. 15, August 2018.
    [9] M. Esro, G. Vourlias, C. Somerton, W. I. Milne, and G. Adamopoulos," High-mobility ZnO thin film transistors based on solution-processed hafnium oxide gate dielectrics," Adv. Funct. Mater., Vol. 25, pp. 134–141, November 2014.
    [10] W. Yu, D. Han, J. C. Dong, Y. Y. Cong, G. D. Cui, Y. Wang, and S. D. Zhang, " AZO thin film transistor performance enhancement by capping an aluminum layer," IEEE Transactions on Electron Devices, Vol. 64, No. 5, pp. 2228-2232, May 2017.
    [11] R. A. John, A. C. Nguyen, Y. X. Chen, S. Shukla, S. Chen, and N. Mathews " Modulating cationic ratios for high-performance transparent solution-processed electronics " ACS Appl. Mater. Interfaces, Vol. 8, pp. 1139-1146, Dectember 2015.
    [12] K.H. Liu,1 T. C. Chang, K. C. Chang, T. M. Tsai, T. Y. Hsieh, M. C. Chen, B. L. Yeh, and W. C. Chou, “Investigation of on-current degradation behavior induced by surface hydrolysis effect under negative gate bias stress in amorphous InGaZnO thin-film transistors,” Appl. Phys. Lett., Vol. 104, No. 10, p. 103501, March 2014.
    [13] S. Aikawa, P. Darmawan, K. Yanagisawa, T. Nabatame, Y. Abe, and K. Tsukagoshi, “Thin-film transistors fabricated by low-temperature process based on Ga- and Zn-free amorphous oxide semiconductor,” Appl. Phys. Lett. Vol. 102, p. 102101, March 2013.
    [14] M. A. Y. Barakat, M. Shaban and A. M. El Sayed, " Structural, ultrasonic and spectroscopic studies of tin oxide thin films; effect of Ir and (Ni, Ir) double doping," Mater. Res. Express, Vol.5, No.6, p. 066407, June 2018.
    [15] K. W. Jo, S. W. Moon, and W. Ju Cho, " Fabrication of high-performance ultrathin-body SnO2 thin-film transistors using microwave-irradiation post-deposition annealing," Appl. Phys. Lett., Vol. 106, p. 043501, January 2015.
    [16] Y. Y. Weng, D. Y. Deng, L. C. Zhang, Y. Y. Su and Y. Lv," A cataluminescence gas sensor based on mesoporous Mg-doped SnO2 structures for detection of gaseous acetone," Anal. Methods, Vol. 8, pp. 7816-7823, October 2016.
    [17] H. A. Klasens and H. Koelmans, " A tin oxide field-effect transistor," Solid State Electronics, Vol. 7, pp. 701-702, 1964.
    [18] J. W. Jang , R. Kitsomboonloha , S. L. Swisher , E. S. Park , H. K. Kang , and V. Subramanian," Transparent high-performance thin film transistors from solution-processed SnO2 /ZrO2 gel-like precursors," Adv. Mater., Vol. 25, pp. 1042-1047, November 2012.
    [19] J. E. Dominguez, L. Fu, and X. Q. Pan," Effect of crystal defects on the electrical properties in epitaxial tin dioxide thin films," Appl. Phys. Lett., Vol. 81, pp. 5168-5170 , October 2002.
    [20] J. Sun, A. Lu, L. P. Wang, Y. Hu, and Q. Wan," High-mobility transparent thin-film
    transistors with an Sb-doped SnO2 nanocrystal channel fabricated at room temperature," Nanotechnology, Vol. 20, p. 335204, July 2009.
    [21] A. Chin, C. W. Shih, C. F. Lu ,and W. F. Su," High mobility SnO2 TFT for display and future IC," AM-FPD, August 2016.
    [22] B. H. Jang , T. Kim, S. J. Lee , W. Y. Lee, H. K. Kang, C. S. Cho, and J. W. Jang," High performance ultrathin SnO2 thin-film transistors by sol–gel method," IEEE Electron Device Letters, Vol. 39, No. 8, pp. 1179-1182, August 2018.
    [23] S. M. Ali, J. Muhammad, S. T. Hussain, S. D. Ali, N. U. Rehman, M. H. Aziz," Annealing effect on structural, optical and electrical properties of pure and Mg doped tin oxide thin films," J Mater Sci: Mater Electron, Vol. 24, pp. 4925–4931, September 2013.
    [24] N. Mazumder, A. Bharati, S. Saha, D. Sen, K.K. Chattopadhyay," Effect of Mg doping on the electrical properties of SnO2 nanoparticles," Current Applied Physics, Vol. 12, pp. 975-982, January 2012.
    [25] B. Skariaha, J. Naduvathb, B.Thomas," Effect of long term ageing under humid environment on the LPG sensing properties and the surface compositionof Mg-doped SnO2 thin films," Ceramics International, Vol. 42, pp. 7490–7498, January 2016.
    [26] Q. Dong, S. Yin, M. Yoshida, X. Y. Wu, B. Liu, A. Miura, T. Takei, N. Kumada, T. Sato," Alkaline earth metal doped tin oxide as a novel oxygen storage material," Materials Research Bulletin, Vol. 69, pp. 116–119, November 2015.
    [27] T. Kamiya, and H. Hosono," Material characteristics and applications of transparent
    amorphous oxide semiconductors," NPG Asia Mater., Vol. 2, No. 1, pp. 15–22, January 2010.
    [28] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler," High mobility transparent thin-film transistors with amorphous zinc tin oxide channel layer," Appl. Phys. Lett., Vol. 86, p. 013503, Dectember 2004.
    [29] K. Nomura1, H. Ohta1, A. Takagi, T. Kamiya, M. Hirano1,and H. Hosono," Room-temperature fabrication of transparent flexible thin-film transistors using amorphous
    oxide semiconductors," Nature, Vol. 432, No. 25, pp. 488-492, November 2004.
    [30] S. Mohana Priya, A. Geetha, and K. Ramamurthi," Effect of annealing on tin oxide nanoparticles and vanadiumtin oxide nanocomposites prepared using sol-gel method," Int. J. ChemTech Res, Vol. 7, No.3, pp 1290-1296, February 2015.
    [31] B. Slater, C. Richard, A. Catlow, D. H. Gay, D. E. Williams, and V. Dusastre," Study of surface segregation of antimony on SnO2 surfaces by computer simulation techniques," J. Phys. Chem. B, Vol. 103, pp. 10644-10650, August 1999.
    [32] M. G. Helander, M. T. Greiner, Z. B. Wang, and W. M. Tang," Work function of fluorine doped tin oxide," J. Vac. Sci. Technol. A, Vol. 29, No. 1, p. 011019, January 2011.
    [33] G. Korotcenkov, S. D. Hana," (Cu, Fe, Co, or Ni)-doped tin dioxide films deposited by spray pyrolysis: Doping influence on thermal stability of the film structure," Materials Chemistry and Physics, Vol. 113, pp. 756–763, February 2009.
    [34] G. Huang, L. Duan, G. Dong, D. Zhang, and Y. Qiu," High-mobility solution-processed tin oxide thin-film transistors with high‑κ alumina dielectric working in enhancement mode," ACS Appl. Mater. Interfaces, Vol. 6, pp. 20786−20794, November 2014.
    [35] A. R. A. A. Sakhta, A. H. Khdro, and A. N. Darwishoand," Morphological and optical properties of pure and Mg doped tin oxide thin films prepared by spray pyrolysis
    method," American Journal of Nanosciences., Vol. 3, No. 2, pp. 19-23, May 2017.
    [36] S. Jiang, X. Yang, J. H. Zhang, and X. F. Li," Solution-processed stacked TiO2 and Al2O3 dielectric layers for high mobility thin film transistor," AIP Advances, Vol. 8, pp. 085-109, August 2018.
    [37] K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, R. Choi and Y. G. Mo, "Comprehensive studies of the degradation mechanism in amorphous InGaZnO," Microelectronic Engineering, vol. 88, pp. 1412-1416, July 2011.
    [38] K. H. Ji, J.-I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang and J. K. Jeong, "Effect of high-pressure oxygen annealing on negative bias illumination stress induced," Applied Physics Letters, Vol. 98, p. 103509, February 2011.
    [39] J. K. Jeong, " Photo-bias instability of metal oxide thin film transistors for advanced active matrix displays," J. Mater. Res., Vol. 28, No. 16, pp. 2071-2084, August 2013
    [40] G. T. Dang, T. Uchida, T. Kawaharamura, M. Furuta, A. R. Hyndman,R. Martinez, S. Fujita, R. J. Reeves, and M. W. Allen," Silver oxide schottky contacts and metal semiconductor field-effect transistors on SnO2 thin films", Applied Physics Express, Vol. 9, p. 041101, February 2016.
    [41] L. Mai, D. Zanders, E. Subaşı, E. Ciftyurek, C. Hoppe, D. Rogalla, W. Gilbert, T. Arcos, K. Schierbaum, G. Grundmeier, C. Bock, and A. Devi," Low-temperature plasma-enhanced atomic layer deposition of tin(IV) oxide from a functionalized alkyl precursor: fabrication and evaluation of SnO2‑based thin-film transistor devices," ACS Appl. Mater. & Interfaces, Vol. 11, pp. 3169−3180, January 2019.
    [42] A. Chin, C. W. Shih, C. F. Lu, and W. F. Su," High mobility SnO2 TFT for display and future IC," AM-FPD, August 2016.
    [43] J. Z. Sheng, J. H. Han, W. H. Choi, J. Park and J. S. Park, "Performance and stability enhancement of In-Sn-Zn-O TFTs using SiO2 gate dielectrics grown by low temperature atomic layer deposition," ACS Applied Materials & Interfaces, Vol. 9, No. 49, pp. 42928-42934, November 2017.
    [44] W. Deng, X. Xiao, Y. Shao, Z. Song, C. Y. Lee, A. Lien, and S.D. Zhang, " A back-channel-etched amorphous InGaZnO thin-film transistor technology with Al-doped ZnO as source/drain and pixel electrodes, " IEEE Transactions on Electron Devices, Vol. 63, No. 5, pp. 2205-2209, March 2016.
    [45] H. C. Chu, Y. S. Shen, C. H. Hsieh, J. H. Huang, and Y. H. Wu," Low-voltage operation of ZrO2‑gated n‑type thin-film transistors based on a channel formed by hybrid phases of SnO and SnO2," ACS Appl. Mater. & Interfaces, Vol. 7, pp. 15129−15137, July 2015.
    [46] W. Zhong, G.Y. Li, L.F. Lan, B. Li and R.S. Chen, " Effects of annealing temperature on properties of InSnZnO thin film transistors prepared by Co-sputtering," RSC Advances, Vol. 8, No. 61, pp. 34817-34822, September 2018.

    無法下載圖示 校內:2024-07-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE