| 研究生: |
王正欽 Wang, Chang-Chin |
|---|---|
| 論文名稱: |
金屬合金粉末企業如何建立競爭優勢 How metal alloy powder companies build competitive advantages |
| 指導教授: |
張佑宇
Chang, Yu-Yu |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 高階管理碩士在職專班(EMBA) Executive Master of Business Administration (EMBA) |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 51 |
| 中文關鍵詞: | 積層製造 、金屬粉末 、低價競爭 、競爭優勢 |
| 外文關鍵詞: | additive manufacturing, metal powder, low-cost competition, competitive advantage |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著金屬積層製造技術的快速發展,市場對金屬合金粉末的需求不斷增加,也伴隨來自市場低價競爭的挑戰,粉末供應商必須重新審視其商業模式及競爭策略,以在激烈的市場環境中維持競爭優勢。本研究聚焦於金屬積層製造粉末行業的低價競爭影響、粉末品質需求、技術支持及合作需求,以及差異化策略和未來市場趨勢,通過訪談行業內設備製造商、代工廠、粉末製造商及終端用戶,深入分析市場挑戰與機會,並提出應對策略。
研究結果顯示,低價競爭對市場造成了多層次的影響,包括價格壓力、利潤侵蝕及品質風險增加。低價供應商雖在短期內改變了行業價格基準,但也導致品質不穩定性和生產風險的增加。高品質金屬粉末的需求逐漸成為市場的主流,特別是在高端應用領域,客戶更注重品質穩定性、供應可靠性及技術支持。技術支持被認為是應對積層製造技術複雜性的關鍵手段,供應商提供的參數優化及技術解決方案,能夠顯著提升客戶的生產效率和產品競爭力。差異化策略是企業應對低價競爭的有效方法。本研究發現,通過提升產品品質、提供增值服務、技術創新以及品牌建設,粉末企業可以有效避開價格戰,並在高附加值市場中占據有利地位。此外,從未來市場趨勢顯示,特殊合金粉末、多樣化材料及靈活供應鏈的需求將持續增長。供應商需具備敏捷的供應鏈管理能力,並提供客製化解決方案以應對小批量及多樣化的市場需求。從研究結果分析,本研究提出以下建議:金屬粉末企業應加大研發投入,開發針對高端應用的特殊合金材料;深化技術合作,與設備商及終端用戶共同推動技術進步;優化供應鏈管理,以快速響應市場需求波動;強化品牌建設,通過品質與服務創造差異化價值;並提供客製化粉末開發與增值服務,增強客戶黏性。
金屬積層製造粉末行業的未來發展充滿挑戰與機遇。粉末企業需在高品質材料開發、技術創新、供應鏈管理及品牌建設方面持續投入,才能在低價競爭的市場環境中保持長期競爭優勢。本研究不僅為金屬粉末供應商提供了具體策略指引,亦為行業未來的研究和實踐提供了參考價值。
The rapid growth of metal additive manufacturing technology has driven increasing demand for metal alloy powders, while also introducing challenges from low-cost competition. Metal powder suppliers must reassess their business models and strategies to maintain a competitive edge. This study explores the impact of low-cost competition, quality demands, technical support, collaboration needs, differentiation strategies, and future market trends in the metal powder industry. Through interviews with industry stakeholders, it identifies key challenges and proposes effective strategies.The results show that low-cost competition creates price pressures, profit erosion, and quality risks. Although low-cost suppliers disrupt pricing benchmarks, they also increase instability. High-quality powders are increasingly valued, particularly in high-end applications requiring quality consistency, supply reliability, and technical support. Differentiation through quality improvement, value-added services, innovation, and branding helps powder suppliers avoid price wars and succeed in high-value markets. Future trends indicate growing demand for specialty alloys, diversified materials, and agile supply chains, requiring suppliers to provide customized solutions and rapid market responses.
Recommendations include increasing R&D for specialty alloys, enhancing technical collaboration, optimizing supply chains, strengthening branding, and offering customized development and services. These strategies help suppliers maintain long-term competitiveness in a challenging market. This study provides actionable insights for suppliers and serves as a reference for future industry research.
1. Alexander, A. H., Lorenz, E., Vanessa, G., Iván, O. M., Tobias, S. & Tajda, S. (2024). Why competition with China is getting tougher than ever. THE ECB BLOG.
2. Akbari, P., Zamani, M., & Mostafaei, A. (2024). Machine learning prediction of mechanical properties in metal additive manufacturing. Additive Manufacturing, 91, 104320.
3. Chia, H. Y., Wu, J., Wang, X., & Yan, W. (2022). Process parameter optimization of metal additive manufacturing: A review and outlook. Journal of Materials Informatics, 2(4), N-A.
4. Chen, X., Li, J., Cheng, X., Wang, H., & Huang, Z. (2018). Effect of heat treatment on microstructure, mechanical and corrosion properties of austenitic stainless steel 316L using arc additive manufacturing. Materials Science and Engineering: A, 715, 307-314.
5. Chesbrough, H. (2003). The logic of open innovation: managing intellectual property. California management review, 45(3), 33-58.
6. Du Plessis, A., & Macdonald, E. J. A. M. (2020). Hot isostatic pressing in metal additive manufacturing: X-ray tomography reveals details of pore closure. Additive Manufacturing, 34, 101191.
7. Dawes, J., Bowerman, R., & Trepleton, R. (2015). Introduction to the additive manufacturing powder metallurgy supply chain. Johnson Matthey Technology Review, 59(3), 243-256.
8. Epperson, J. (2021). Creating Optimized Value Creation Conditions: An Additive Manufacturing Model (Doctoral dissertation, Massachusetts Institute of Technology).
9. Francis, M. (2007). The effect of China on global prices. Bank of Canada Review, 2007(Autumn), 14-26.
10. Gunasegaram, D. R., Barnard, A. S., Matthews, M. J., Jared, B. H., Andreaco, A. M., Bartsch, K., & Murphy, A. B. (2024). Machine learning-assisted in-situ adaptive strategies for the control of defects and anomalies in metal additive manufacturing. Additive Manufacturing, 104013.
11. Gunasegaram, D. R., Murphy, A. B., Matthews, M. J., & DebRoy, T. (2021). The case for digital twins in metal additive manufacturing. Journal of Physics: Materials, 4(4), 040401.
12. Gisip, I. A., & Harun, A. (2013). Antecedents and outcomes of brand management from the perspective of resource based view (RBV) theory. Mediterranean Journal of Social Sciences, 4(10), 432-438.
13. Hilleke, K., & Butscher, S. A. (1997). How to use a two‐product strategy against low‐price competition. Pricing Strategy and Practice, 5(3), 108-115.
14. Hisan, H., Badruddin, N. A., & Yusof, K. H. (2024). A Review of Malaysia’s Aerospace Manufacturing Post-COVID19 Pandemic Using Michael Porter’s Five Competitive Forces Model. In E3S Web of Conferences (Vol. 477, p. 00048). EDP Sciences.
15. Kowen, J. (2024). China’s thriving metal Additive Manufacturing industry: An outsider’s perspective, Metal Additive Manufacturing, 10, 157.
16. Kladovasilakis, N., Charalampous, P., Kostavelis, I., Tzetzis, D., & Tzovaras, D. (2021). Impact of metal additive manufacturing parameters on the powder bed fusion and direct energy deposition processes: A comprehensive review. Progress in Additive Manufacturing, 6, 349-365.
17. Khaddam, A., Irtaimeh, H., & Bader, B. (2020). The effect of supply chain management on competitive advantage: The mediating role of information technology. Uncertain Supply Chain Management, 8(3), 547-562.
18. Laleh, M., Sadeghi, E., Revilla, R. I., Chao, Q., Haghdadi, N., Hughes, A. E., ... & Tan, M. Y. (2023). Heat treatment for metal additive manufacturing. Progress in Materials Science, 133, 101051.
19. Ladani, L. J. (2021). Applications of artificial intelligence and machine learning in metal additive manufacturing. Journal of Physics: Materials, 4(4), 042009.
20. Lin, Y., & Wu, L. Y. (2014). Exploring the role of dynamic capabilities in firm performance under the resource-based view framework. Journal of business research, 67(3), 407-413.
21. Munsch, M., Schmidt-Lehr, M., Wycisk, E., & Führer, T. (2024). Thorough coverage of AM market with high share of primary data. AMPOWER Report.
22. Masinelli, G., Shevchik, S. A., Pandiyan, V., Quang-Le, T., & Wasmer, K. (2021). Artificial intelligence for monitoring and control of metal additive manufacturing. In Industrializing Additive Manufacturing: Proceedings of AMPA2020 (pp. 205-220). Springer International Publishing.
23. Madhani, P. M. (2010). Resource based view (RBV) of competitive advantage: an overview. Resource based view: concepts and practices, Pankaj Madhani, ed, 3-22.
24. Oliveira, J. P., LaLonde, A. D., & Ma, J. (2020). Processing parameters in laser powder bed fusion metal additive manufacturing. Materials & Design, 193, 108762.
25. Pan, X. (2023). An inside perspective on China’s thriving metal Additive Manufacturing industry. Metal Additive Manufacturing, 9, 151.
26. Nzengue, A. G. B., Mpofu, K., Mathe, N., Muvunzi, R., & Oyesola, M. (2023). An Integrated Value-Addition in Supply Chain Network for Metal-based Additive Manufacturing. Procedia CIRP, 120, 892-897.
27. Porter, M. E. (1985). Technology and competitive advantage. Journal of business strategy, 5(3), 60-78.
28. Porter’s, V. C. M. (1985). What is value chain. E-Commer., 1-13.
29. Phua, A., Cook, P. S., Davies, C. H., & Delaney, G. W. (2022). Powder spreading over realistic laser melted surfaces in metal additive manufacturing. Additive Manufacturing Letters, 3, 100039.
30. Röschenthaler, U. (2016). Good quality or low price? Competition between Cameroonian and Chinese traders. African East-Asian Affairs, (1-2).
31. Slotwinski, J. A., Garboczi, E. J., Stutzman, P. E., Ferraris, C. F., Watson, S. S., & Peltz, M. A. (2014). Characterization of metal powders used for additive manufacturing. Journal of research of the National Institute of Standards and Technology, 119, 460.
32. SmarTech, (2023). Metal Parts Produced 2023: Global Market Data & Forecast. SmarTech.
33. Sæterbø, M., & Solvang, W. D. (2023). Evaluating the cost competitiveness of metal additive manufacturing–A case study with metal material extrusion. CIRP Journal of Manufacturing Science and Technology, 45, 113-124.
34. Turkcan, H., Imamoglu, S. Z., & Ince, H. (2022). To be more innovative and more competitive in dynamic environments: The role of additive manufacturing. International Journal of Production Economics, 246, 108418.
35. Wübbeke, J. (2016). Made in China 2025. The Making of a High-Tech Superpower and Consequences for Industrial Countries.
36. Wohlers, T. (2024). Analysis. Trends. Forecasts. 3D Printing and Additive Manufacturing State of the Industry. Wohlers Report.
37. Wernerfelt, B. (1984). A resource‐based view of the firm. Strategic management journal, 5(2), 171-180.
校內:2030-02-03公開