簡易檢索 / 詳目顯示

研究生: 蔣沛恩
Chiang, Pei-An
論文名稱: 燃氣渦輪定葉前緣抽氣流道熱傳與壓損實驗研究
An experimental study of heat-transfer and pressure-drop of leading-edge coolant channel with effusion in a gas turbine stator blade.
指導教授: 張始偉
Chang, Shyy-Woei
學位類別: 碩士
Master
系所名稱: 工學院 - 系統及船舶機電工程學系
Department of Systems and Naval Mechatronic Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 69
中文關鍵詞: 衝擊噴柱列抽氣梯型通道渦輪定葉前緣冷卻
外文關鍵詞: Jet-row Impingement, Effusion Trapezoidal Channel, Turbine Stator Blade Leading-edge Cooling
相關次數: 點閱:102下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗研究量測衝擊噴柱列等腰梯形抽氣管道之熱傳與壓損性能,噴柱列之噴射方向與梯形抽氣管道之頂面垂直。設置於梯形管道抽氣孔之排列方式包含:(I)沒有抽氣孔(II)通道頂壁及一側壁分別設置一排抽氣孔(III)通道頂壁及兩側壁各設一排抽氣孔。除三種定義為(I)一排(II)兩排(III)三排抽氣孔之幾何特徵外,該梯形抽氣管道底端封閉,其頂端排氣,藉由裝設於管道頂端排氣口之流量調節閥,於各抽氣條件,梯形抽氣管道頂端排氣質量流率控制為饋入管道冷卻流體總質量流率之0% (全關)、5%、10%以及全封閉測試條件。於三組抽氣條件及每抽氣條件控制不同之排氣量,依據饋入管道冷卻流體總質量流率及其水力直徑定義之通道測試雷諾數分別為5000、7500、10000、12500及15000。於各測試條件之管道各壁面熱傳係數分布,係使用穩態紅外線熱傳檢測技術量測。管道之范寧摩擦係數依據管道進、口處之壓降量測。基於實驗量測之管道壁面平均熱傳係數及范寧摩擦係數,評估熱性能係數。與沒有抽氣孔之通道比較,抽氣孔顯著降低管道中之橫流效應及流體侷限效應,大幅提升管道封閉底部區域之熱傳性能。比較三組不同抽氣及排氣條件量測之實驗數據,三排抽氣孔之衝擊噴柱列測試管道,其熱傳性能最佳;相對於抽氣孔排數對熱傳性能之影響,通道頂端排氣條件變化對於熱傳性能之影響較不明顯,但是降低通道頂端之排放流量比率能改善各抽氣管道之整體熱傳性能。與沒有抽氣孔之通道相比,設置抽氣孔管道之范寧摩擦係數由於減緩管道之侷限效應而降低。綜整抽氣孔管道之熱傳提升及降低壓損特性,於衝擊噴柱列梯形管道設置抽氣孔能有效提升熱性能係數。

    The present experimental study investigated the heat transfer and pressure drop performances of the isosceles trapezoidal channel cooled by the impinging jet-row with and without effusion. Three effusion conditions by allocating the effusion holes as (I) one-row (II) two-row (III) three-row along the channel apex wall, the apex and one sidewall, and the apex and two sidewalls. At each effusion condition, the discharged ratio between the exhausted mass flow rate from channel tip and the total supplied airflow rate was controlled at 0% (fully closed condition), 5%, 10% and fully open condition. At each effusion and tip-discharged condition, the steady-state infrared thermography method was used to detect the full-field heat transfer data for the channel apex wall and two channel sidewalls. The measurements of heat transfer rate, Fanning friction coefficient and thermal performance factor at each effusion and tip-discharge condition were carried out at channel Reynolds number of 5000, 7500, 10000, 12500 and 15000. As the effusion from the bottom-sealed channel considerably suppressed the crossflow effect and the flow confinement, the heat transfer performances were improved from those detected from the non-effusion channel. Among the test channels with different effusion row numbers, the channel with three rows of effusion holes exhibited the best heat transfer performance. Unlike the significant heat transfer impact caused by the effusion holes, the adjustment of the tip-discharged ratio showed lesser effect on the heat transfer performance. But the decrease of tip-discharge ratio still improved the overall heat transfer performance. Due to relaxation of the confinement effect by effusion, the Fanning friction coefficients of the channels were reduced by effusion. Combining the heat transfer enhancement and the reduction of channel pressure drop by effusion, the thermal performance factors of the effusion channels were elevated from the non-effusion channel references.

    Table of Contents 摘要 I Abstract III Acknowledgement V Table of Contents VI List of Tables VII List of Figures VIII Nomenclature X Chapter 1 Introduction and Literature Review 1 Chapter 2. Experimental Method 14 2.1 Experimental facilities 14 2.2 Experimental conditions 20 2.3 Data processing method 21 2.4 Experiment uncertainties 26 Chapter 3. Results and Discussion 28 3.1 Mass flow distributions of jets in channels with different effusion and discharge conditions 28 3.2 Heat transfer distribution 33 3.3 Local and regional heat transfer performances 39 3.4 Overall heat transfer performance and heat transfer correlation 49 3.5 Fanning friction factor 56 3.6 Thermal performance factor 60 Chapter 4. Conclusions 62 References 65

    [1] J.-C. Han, Recent Studies in Turbine Blade Cooling, Int. J. Rotating Machinery, Vol. 10, pp. 443-457, 2004.
    [2] R. Chupp, H. E. Helms, P. W. McFadden, T. R. Brown, Evaluation of Internal Heat-Transfer Coefficients for Impingement-Cooled Turbine Airfoils, J. Aircraft, Vol. 6, pp. 203-208, 1969.
    [3] D.E. Metzger, T. Yamashita, C.W. Jenkins, Impingement Cooling of Concave Surfaces With Lines of Circular Air Jets, ASME Journal of Engineering Power, Vol. 93, pp. 149-155, 1969.
    [4] L.W. Florschetz, C.R. Truman, D.E. Metzger, Streamwise Flow and Heat Transfer Distribution for Jet Impingement With Crossflow, ASME Journal of Heat Transfer, Vol. 103, pp. 337-342, 1981.
    [5] D.E. Metzger, and R.S. Bunker, Local Heat Transfer in Internally Cooled Turbine Airfoil Leading Edge Regions: Part I—Impingement Cooling Without Film Coolant Extraction, ASME Journal of Turbomachinery, Vol. 112, pp. 451-458, 1990.
    [6] S.V. Ekkad, Y. Huang, J.-C. Han, Impingement Heat Transfer on a Target Plate With Film Cooling Holes, J. Thermophysics and Heat Transfer, Vol.13, pp. 522-528, 1999.
    [7] M.E. Taslim and A. Khanicheh, Experimental and Numerical Study of Impingement on an Airfoil Leading Edge With and Without Showerhead and Gill Film Holes, ASME Transaction of Journal of Turbomachinery, Vol 128, pp. 310-320, 2006.
    [8] M.E. Taslim and D. Bethka, Experimental and Numerical Impingement Heat Transfer in an Airfoil Leading-Edge Cooling Channel With Cross-Flow, ASME Transaction J. Turbomachinery, Vol. 131, pp. 011021 1-7, 2009.
    [9] Z. Liu, and Z. Feng, Numerical Simulation on the Effect of Jet Nozzle Position on Impingement Cooling of Gas Turbine Blade Leading Edge, Int. J. Heat Mass Transfer, Vol. 54, pp. 4949-4959, 2011.
    [10] L. Yang, J. Ren, H. Jiang, P. Ligrani, Experimental and Numerical Investigation of Unsteady Impingement Cooling Within a Blade Leading Edge Passage, Int. J. Heat Mass Transfer, Vol. 71, pp. 57-68, 2014.
    [11] Z. Liu, L. Ye, C. Wang, Z. Feng, Numerical Simulation on Impingement and Film Composite Cooling of Blade Leading Edge Model for Gas Turbine, Applied Thermal Engineering, Vol. 73, pp. 1432-1443, 2014.
    [12] M.Z. Mohammad, R.-Z. Mehran, A.S. Mujumdar, M.S Valipour, A. Mojtaba, Optimization of Turbine Blade Cooling Using Combined Cooling Techniques, Engineering Applications of Computational Fluid Mechanics, Vol. 8, pp. 462-475, 2014.
    [13] K.M. Kim, H. Moon, J.S. Park, H.H. Cho, Optimal Design of Impinging Jets in an Impingement/Effusion Cooling System, Energy, Vol. 66, pp. 839-848, 2014.
    [14] J. Lee, Z. Ren, J. Haegele, G. Potts, J. S. Jin, P. Ligrani, M. D. Fox, H.-K. Moon, Effects of Jet-to-Target Plate Distance and Reynolds Number on Jet Array Impingement Heat Transfer, ASME Journal of Turbomachinery, Vol. 136, pp. 051013 1-13, 2014.
    [15] J. Lee, Z. Ren, P. Ligrani, M. D. Fox, H.-K. Moon, Crossflows from Jet Array Impingement Cooling: Hole Spacing, Target Plate Distance, Reynolds Number Effects, International Journal of Thermal Sciences 88 (2015) 7-18.
    [16] A. Andreinia, E. Burberia, L. Cocchia, B. Facchinia, D. Massinia, M. Pievarolia, Heat Transfer Investigation on an Internal Cooling System of a Gas Turbine Leading Edge Model, Energy Procedia, Vol. 82, pp. 222-229, 2015.
    [17] A.R.A. Ali, I. Janajreh, Numerical Simulation of Turbine Blade Cooling via Jet Impingement, Energy Procedia, Vol. 75, pp. 3220-3229, 2015.
    [18] A. U. Tepe, K. Arslan, Y. Yetisken, U. Uysal, Effects of Extended Jet Holes to Heat Transfer and Flow Characteristics of the Jet Impingement Cooling, ASME Journal of Heat Transfer, Vol. 141, pp. 082202 1-14, 2019.
    [19] E. Oztekin, O. Aydin, M. Avci, Heat Transfer in a Turbulent Slot Jet Flow Impinging on Concave Surfaces, Int. Communications in Heat Mass Transfer, Vol. 44, pp. 77-82, 2013.
    [20] Y. Zhou, G. Lin, X. Bu, L. Bai, D. Wen, Experimental Study of Curvature Effects on Jet Impingement Heat Transfer on Concave Surfaces, Chinese J. Aeronautics, Vol. 30, pp. 586-594, 2017.
    [21] Z. Liu, J. Li, Z. Feng, Numerical Study of Swirl Cooling in a Turbine Blade Leading-Edge Model, J. Thermophysics and Heat Transfer, Vol. 29, pp. 166-178, 2015.
    [22] G. Lin, K. Kusterer, A.H. Ayed, D. Bohn, T. Sugimoto, R. Tanaka, M. Kazari, Numerical Investigation on Heat Transfer in an Advanced New Leading Edge Impingement Cooling Configuration, Propulsion and Power Research, Vol. 4, pp. 179-189, 2015.
    [23] L. Liu, X. Zhu, H. Liu, Z. Du, Effect of Tangential Jet Impingement on Blade Leading Edge Impingement Heat Transfer, Applied Thermal Engineering, Vol. 130, pp. 1380-1390, 2018.
    [24] P.M. Ligrani, Z. Ren, W.C. Buzzard, Impingement jet array heat transfer with small-scale cylinder target surface roughness arrays, International Journal of Heat and Mass Transfer, Vol. 107 pp. 895-905, 2017.
    [25] W.C. Buzzard, Z. Ren, Phillip M. Ligrani, C. Nakamata, S. Ueguchi, Influences of target surface small-scale rectangle roughness on impingement jet array heat transfer, International Journal of Heat and Mass Transfer, Vol. 110, pp. 805-816, 2017.
    [26] Q.-Y. Zhao, H. Chung, S. M. Choi, H. H. Cho, Effect of guide wall on jet impingement cooling in blade leading edge channel, Journal of Mechanical Science and Technology, Vol. 30, pp. 525-531, 2016.
    [27] J. Zhou, X. Wang, J. Li, Y. Li, Effects of Film Cooling Hole Locations on Flow and Heat Transfer Characteristics of Impingement/Effusion Cooling at Turbine Blade Leading Edge, Int. J. Heat Mass Transfer, Vol. 126, pp. 192-205, 2018.
    [28] A. Andreini, L. Cocchi, B. Facchini, L. Mazzei, A. Picchi, Experimental and Numerical Investigation on the Role of Holes Arrangement on the Heat Transfer in Impingement/Effusion Cooling Schemes, Int. J. Heat Mass Transfer, Vol. 124, pp. 645-659, 2018.
    [29] N. Wang, A. F. Chen, M. Zhang, J.-C. Han, Turbine Blade Leading Edge Cooling With One Row of Normal or Tangential Impinging Jets, ASME J. Heat Transfer, Vol. 140, pp. 062201 1-10, 2018.
    [30] J. Zhou, X. Wang, J. Li, Influence of Effusion Hole Impingement/Effusion Cooling Turbine Blade Leading Edge, Int. J. Heat Mass Transfer, Vol. 134, pp. 1101-1118, 2019.
    [31] V.V. Lemanov, V.I. Terekhov, K.A. Sharov, A.A. Shumeiko, An Experimental Study of Submerged Jets at Low Reynolds Numbers, Technical Physics Letters, Vol. 39, pp. 421-423, 2013.
    [32] S.W. Chang and K.-C. Yu, Thermal Performance of Radially Rotating Trapezoidal Channel With Impinging Jet-Row, Int. J. Heat Mass Transfer, Vol. 136, pp. 246-264, 2019.
    [33] J.H. Kim, T.W. Simon, R. Viskanta, Journal of Heat Transfer Policy on Reporting Uncertainties in Experimental Measurements and Results, ASME J. Heat Transfer, Vol. 115, pp. 5-6, 1993.
    [34] S.K. Hong, D.H. Lee, H.H. Cho, Effect of jet direction on heat/mass transfer of rotating impingement jet, Applied Thermal Engineering, Vol. 29, pp 2914-2920, 2009
    [35] E. E. Halila, D. T. Lenahan, T. T. Thomas, Energy efficient engine high pressure turbine test hardware detailed design report, NASA Lewis Research Center, Cleveland, OH, Report No. NASA-CR-167955, 1982.

    下載圖示 校內:2022-08-06公開
    校外:2022-08-06公開
    QR CODE