簡易檢索 / 詳目顯示

研究生: 廖偉志
Liao, Wei_Chih
論文名稱: 風能轉換系統應用於市電併聯之實功控制
Strategies of Real Power Control for Integration of Wind Energy Conversion System to Power Grid
指導教授: 張簡樂仁
Chang-Cheng, Le-Ren
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 114
中文關鍵詞: 定功率控制風能轉換系統最大功率追蹤控制永磁式同步發電機
外文關鍵詞: PMSG, constant power control, WECS, maximum power point tracking
相關次數: 點閱:70下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來風力發電的發展逐漸成長,隨著風力發電容量佔系統的比例增高,其功率波動勢必對系統產生衝擊。一般應用在風力發電之控制為最大功率追蹤,但風機功率隨著風速改變而變動,對系統穩定度影響甚大,若針對減緩功率波動實施功率平穩化,在低風速時風機可能會處於不穩定的情形。基於以上這些問題,本文建構出使用以永磁式同步發電機結合儲能系統之風能轉換系統。在風機執行最大功率追蹤的操作下,風機產生之功率變動由儲能器吸收,使得在風速變動時仍然使輸入電網的功率可保持穩定輸出,若風速為穩定中高風速下,此系統可不使用儲能系統達成實功控制。透過模擬可證實此控制架構下的功率輸出確實可實現風機或風電廠的調度與控制。

    In recent years, wind power generation capacity has risen up gradually. When installed capacity of the wind power generation has high proportion in the grid system, the power fluctuation may impact the grid operation. The common control strategy for the wind power generation is the maximum power point tracking, which may cause the stability issue due to the variation of wind power. In order to alleviate power variation and realize the real power control, control strategies for Wind Energy Conversion System (WECS) are proposed. This thesis presents a model of PMSG-based wind energy conversion system which is equipped with energy storage system. As the WECS is operated under the maximum power point tracking, the storage system absorbs the power fluctuation from the wind. Meanwhile, the real power at grid side is still controllable when the wind speed changes. When the wind speeds are in the medium-high level, the WECS can even operate the grid side real power control without the storage system. Simulation results validate the control strategies of real power dispatch and control for the wind turbines and wind farms.

    摘 要 I Abstract II 誌 謝 IV 目 錄 IV 表 目 錄 VIII 圖 目 錄 IX 符號索引 XIV 第一章 緒論 1 1.1 研究背景與動機 1 1.2 本文貢獻 2 1.3 本文架構 2 第二章 風力機模型建構 4 2.1風力發電系統簡介 4 2.2 風力機模型建構 8 第三章 發電機控制模型建構 16 3.1 三相永磁式同步發電機數學模式 16 3.2 發電機控制器模型 22 第四章 電力電子轉換器用於市電併聯之模型建構 28 4.1 電力電子轉換器簡介 28 4.2 電力電子轉換器控制模型建構 32 第五章 風力發電系統控制 47 5.1 最大功率追蹤控制 47 5.1.1最大功率追蹤控制模型建構 47 5.1.2風能轉換系統操作在最大功率追蹤控制模擬 59 5.2 定功率控制 84 5.2.1定功率控制模型建構 84 5.2.1.1實功平穩輸出模式建構 84 5.2.1.2改良型線性斜率控制模式建構 86 5.2.1.3旋角控制模式建構 89 5.2.2風能轉換系統操作在定功率控制模擬 94 第六章 結論與未來研究方向 107 6.1 結論 107 6.2 未來研究方向 107 參考文獻 109 作者簡介 114

    [1]Global Wind Energy Council, “Global Wind 2008 Report,”2009. [Online]. Available:http://www.gwec.net/index.php?id=153
    [2]K. Tan, S. Islan, “Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensor,” IEEE Transaction on Energy Conversion, Vol. 19, pp. 392-399, June 2004.
    [3]E. Koutroulis, “Design of a Maximum Power Tracking System for Wind-Energy-Conversion Applications,” IEEE Transactions on Industrial Electronics, Vol. 53, pp. 486-494, April 2006.
    [4]C. Luo, H. G. Far, H. Banakar, P. K. Keung, B. T. Ooi, “Estimation of Wind Penetration as Limited by Frequency Deviation,” IEEE Transaction on Energy Conversion, Vol. 22, Issue 3, pp. 783-791, September 2007.
    [5]C. Luo, H. Banakar, S. Baike, B. T. Ooi, “Strategies to Smooth Wind Power Fluctuations of Wind Turbine Generator,” IEEE Transaction on Energy Conversion, Vol. 22, Issue 2, pp. 341-349, June 2007.
    [6]L. Ran, J. R. Bumby, P. J. Tavner, “Use of Turbine Inertia for Power Smoothing of Wind Turbines with a DFIG,” 11th International Conference on Harmonics and Quality of Power, pp. 106-111, September 2004.
    [7]N. Horiuchi, T. Kawahito, “Torque and Power Limitations of Variable Speed Wind Turbines Using Pitch Control and Generator Power Control,” Power Engineering Society Summer Meeting, Vol. 1, pp. 638-643, July 2001.
    [8]E. Muljadi, C. P. Butterfield, “Pitch-Controlled Variable-Speed Wind Turbine Generation,” IEEE Transactions on Industry Applications, Vol. 17, No. 1, pp. 1942-1950, January/February 2001.
    [9]桂人傑,變速風機之控制系統,精密製造與新興能源機械技術專輯,機械工業雜誌,民國九十五年五月。
    [10]洪志旻,以雙饋式風機頻率響應模型改善系統頻率之運轉,國立成功大學碩士論文,民國九十六年六月。
    [11]A. D. Hansen, L. H. Hansen, “Wind Turbine Concept Market Penetration over 10 Years (1995-2004),” Wind Energy, 2007, 10 (1), pp. 81-97.
    [12]I. Cadirci, M. Ermis, “Double-Output Induction Generator Operating at Subsynchronous and Supersynchronous Speeds : Steady-State Performance Optimisation and Wind-Energy Recovery,” IEE Proceeding - Electric Power Applications, Vol. 139, No. 5, pp. 429-442, September 1992.
    [13]A. Yazdani, R. Iravani, “A Neutral-Point Clamped Converter System for Direct-Drive Variable-Speed Wind Power Unit,” IEEE Transactions on Energy Conversion, Vol. 21, No. 2, pp. 596-607, June 2006.
    [14]C. M. Ong, Dynamic Simulation of Electric Machinery Using MATLAB/SIMULINK, Prentice-Hall, 1998.
    [15]H. Li, Z. Chen, “Overview of different wind generator systems and their comparisons,” IET Renewable Power Generation, Vol. 2, Issue. 2, pp. 123-138, June 2008
    [16]J. G. Slootweg, H. Polinder, and W. L. Kling, “Representing Wind Turbine Electrical Generating System in Fundamental Frequency Simulations,” IEEE Transactions on Energy Conversion, Vol. 18, No. 4, pp. 516-524, December 2004.
    [17]S. Heier, Grid Integration of Wind Energy Conversion Systems, Wiley, 1998.
    [18]G. S. Stavrakakis, G. S. Kariniotakis, “A General Simulation Algorithm for the Accurate Assessment of Isolated Diesel-Wind Turbines Systems Interaction. Part I: A General Multimachine Power System Model,” IEEE Transactions on Energy Conversion, Vol. 10, No. 3, pp. 577-583, September 1995.
    [19]R. G. D. Almeida, E. D. Castronuovo, and J. A. P. Lopes, “Optimum Generation Control in Wind Parks when Carrying Out System Operator Requests,” IEEE Transactions on Power Systems, Vol. 21, No. 2, pp. 718-725, May 2005.
    [20]A. G. Abo-Khalil, D. C. Lee, and S. H. Lee, “Grid Connection of Doubly-Fed Induction Generators in Wind Energy Conversion System,” Power Electronics and Motion Control Conference, IEPMC, CES/IEEE 5th International, Vol. 3, pp. 1-5, August 2006.
    [21]J. F. Conroy, R. Watson, “Frequency Response Capability of Full Converter Wind Turbine Generators in Comparison to Conventional Generation,” IEEE Transactions on Power Systems, Vol. 23, No. 2, pp. 649-656, May 2008.
    [22]B. K. Bose, Modern Power Electronics and AC Drives, Prentice Hall PTR, 2001.
    [23]B. S. Boroway, Z. M. Salameh, “Dynamic Response of a Stand -Alone Wind Energy Conversion System with Battery Energy Storage to a Wind Gust,” IEEE Transactions of Energy Conversion, Vol. 12, pp. 73-78, March 1997.
    [24]黃茂庭,以模糊自調式技術實現永磁同步電動機之速度控制,國立成功大學碩士論文,民國九十七年六月。
    [25]R. H. Park, “Two-Reaction Theory of Synchronous Machines–Generalized Method of Analysis–Part I,” AIEE Transactions, Vol. 48, pp. 716-727, July 1929.
    [26]N. P. W. Strachan, D. Jovcic, “Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conversion and Storage System (WECSS),” Europe of OCEANS, pp. 1-6, 2007.
    [27]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics – Converters, Applications, and Design, 3rd Ed., Wiley, 2003.
    [28]M. Chinchilla, S. Arnaltes, and J. C. Burgos, “Control of Permanent-Magnet Generators Applied to Variable-Speed Wind-Energy Systems Connected to the Grid,” IEEE Transactions on Energy Conversion, Vol. 21, No. 1, pp. 130-135, March 2006.
    [29]A. Nabae, I. Takahashi, and H. Akagi, “ A New Neutral-Point-Clamped PWM Inverter,” IEEE Transactions on Industry Applications, Vol. IA-17, No. 5, pp. 518-523, September/October 1981.
    [30]劉昌煥,交流電機控制向量控制與直接轉矩控制原理,第三版,東華書局,2005。
    [31]D. Jovcic, K. Kahle, “Compensation of Particle Accelerator Load Using Converter Controlled Pulse Compensator,” IEEE Transactions on Power Delivery, Vol. 21, No. 2, pp. 801-808, April 2006.
    [32]尹耀慶,實功控制策略應用於雙饋式風機與風電廠,國立成功大學碩士論文,民國九十七年六月。
    [33]General Electric Company, 1.5MW Series WTG Systems Summaries, 2002.
    [34]陳瑞霖,永磁同步電動機轉軸角度估測及驅動系統的研製,國立台灣科技大學電機工程系碩士論文,民國95年5月。

    下載圖示 校內:2014-07-07公開
    校外:2014-07-07公開
    QR CODE