簡易檢索 / 詳目顯示

研究生: 蘇明信
Su, Ming-Sin
論文名稱: 以賽局理論為基礎之停車場電動車最佳化電力排程
A Game Theory-based Power Scheduling for Parking Lot with Electric Vehicles
指導教授: 楊宏澤
Yang, Hong-Tzer
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 91
中文關鍵詞: 電動車需求端管理最佳化充放電排程賽局理論
外文關鍵詞: Electric vehicle (EV), demand-side management (DSM), optimal scheduling of charging and discharging, game theory
相關次數: 點閱:96下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 響應全球節能減碳思潮,電動車之使用勢將日漸普及。然而,因電動車充電功率需求高,且當大量電動車同時併網充電時,除產生龐大電力需求外,更對既有電力系統設備產生莫大衝擊。本文旨於提出一大樓停車場規模之電動車之最佳化充放電排程策略,以實現需求端管理目標。策略中考量最大化負載因數與最小化能源成本為目標,並於分散式架構下應用賽局理論決定各電動車之充放電排程。此外,本文亦透過時間對間隔映射與移動框架方式,於各個時間點重新執行最佳化排程,以符合現實中電動車之動態特性。本文所提出之最佳化排程方法分別在住宅與商業情境及多種電價結構的考量下進行模擬驗證與比較,其結果顯示本文方法除可於平常案例中提升負載因數並減少電力成本支出外,更可應用於如台電公司需量競價措施,進而為停車場業者帶來額外利益。

    Responding to the global trend of energy saving and carbon reduction, electric vehicles (EVs) have certainly become more popular. However, due to the high demand for EV charging, when there are a large number of EVs charging simultaneously, an enormous power demand is produced that can even result in a serious impact to the existing power system facility. This thesis proposes an optimal scheduling strategy for charging and discharging EVs in a parking lot of building scale to achieve the goal of demand-side management (DSM). The objectives of the strategy are to maximize the load factor and minimize the energy cost. The schedule for charging and discharging each EV is developed by applying game theory in a decentralized structure. In addition, the time-to-interval and moving horizon techniques are adopted in this thesis, re-executing the optimization process at each time slot to be suitable for the dynamic properties of EVs in practice. The proposed optimal scheduling algorithm is verified and compared by simulating in residential and commercial scenarios with many types of pricing structures. The simulation results show that the strategy of this thesis not only raises the load factor and decreases the power cost payment, but can also be utilized in the demand bidding mechanism of the Taiwan Power Company, which can produce additional profits for the parking lot operators.

    摘 要 II ABSTRACT III 誌 謝 V CONTENTS VI LIST OF TABLES XI LIST OF FIGURES XIII NOMENCLATURE XV CHAPTER 1 INTRODUCTION 1 1.1 Background and Motivation 1 1.2 Literature Review 2 1.3 Research Objective and Contributions 7 1.4 Organization of the Thesis 9 CHAPTER 2 SYSTEM DESCRIPTION AND MODELING 10 2.1 Introduction 10 2.2 Overall System Structure 10 2.3 Equipment Modeling 11 2.3.1 Parking Lot System 11 2.3.2 Server and SCADA System (Central Controller) 11 2.3.3 Gateway (Local Controller) 12 2.3.4 EV Charger 12 2.4 Market Mechanism 13 2.4.1 Toll Collection for EV Owners 13 2.4.2 Demand Response 14 2.4.3 Demand Bidding Mechanism 15 2.4.4 Profit-Sharing Mechanism of Aggregator and EV Owners 16 2.5 Game Theory 17 2.5.1 Brief Introduction 17 2.5.2 Prisoner’s Dilemma 18 2.5.3 Nash Equilibrium 18 CHAPTER 3 THE PROPOSED SCHEDULING STRATEGY AND OPTIMIZATION ALGORITHM 19 3.1 Introduction 19 3.2 Procedure of the Proposed Algorithm 19 3.3 Centralized Optimization Problem 22 3.3.1 Load Forecasting 22 3.3.2 Objective Function 23 3.3.3 Constraints 24 3.4 Dynamic Characteristic Processing 25 3.4.1 Dynamic Properties of EV 25 3.4.2 Time-to-Interval Mapping 26 3.4.3 Moving Horizon 27 3.5 Decentralized Optimization Approach 29 3.5.1 Decentralized Optimization Formulation 29 3.5.2 Differential Evolution 30 3.6 Game Theory Formulation 34 3.6.1 NCFR Game Model 34 3.6.2 Existence and Uniqueness of Nash Equilibrium 35 3.6.3 Nash Equilibrium and Optimal Solution 35 CHAPTER 4 SIMULATION RESULTS 37 4.1 Introduction 37 4.2 Simulated Systems 38 4.2.1 General System Parameters 38 4.2.2 Electricity Pricing Signal 39 4.2.3 Toll Collection Rate 41 4.2.4 Base Load 41 4.2.5 EV Parameters 43 4.3 Performance Comparison among Different OPT Algorithm 46 4.4 Residential Scenario 47 4.4.1 General and Demand Bidding Cases for TPC 2-Level TOU 47 4.4.2 General and Demand Bidding Cases for TPC 3-Level TOU 51 4.4.3 General Case for Testing RTP 54 4.5 Commercial Scenario 56 4.5.1 General and Demand Bidding Cases for TPC 2-Level TOU 56 4.5.2 General and Demand Bidding Cases for TPC 3-Level TOU 59 4.5.3 General Case for Testing RTP 62 4.6 Simulation and Analysis of the Demand Bidding Case 64 4.6.1 Relieving the Peak after a DR Event 64 4.6.2 Raising the CBL 64 4.6.3 Demand Bidding Case for TPC 2-Level TOU 66 4.6.4 Demand Bidding Case for TPC 3-Level TOU 69 4.6.5 Profit-sharing Analysis of Aggregator and EV owners 73 4.7 Sensitivity Analysis of Weighting Coefficient k 75 4.8 Computation Time Analysis for EVs number 80 4.9 Summary 83 CHAPTER 5 CONCLUSIONS 85 5.1 Conclusions 85 5.2 Future Work 86 REFERENCES 88

    [1] L. Jian, H. Xue, G. Xu, X. Zu, D. Zhao, and Z. Y. Shao, “Regulated Charging of Plug-in Hybrid Electric Vehicles for Minimizing Load Variance in Household Smart Microgrid,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3218-3226, Aug. 2013.
    [2] K. Clement-Nyns, E. Haesen, and J. Driesen, “The Impact of Charging Plug-In Hybrid Electric Vehicles on a Residential Distribution Grid,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 371-380, Feb. 2010.
    [3] Y. Mou, H. Xing, Z. Lin, and M. Fu, “Decentralized Optimal Demand-Side Management for PHEV Charging in a Smart Grid,” IEEE Trans. Smart Grid, vol. 6. no. 2, pp.726-736, Mar. 2015.
    [4] Z. Fan, “A Distributed Demand Response Algorithm and Its Application to PHEV Charging in Smart Grids,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1280-1290, Sep. 2012.
    [5] C. Guille and G. Gross, “A conceptual framework for the vehicle-to grid (V2G) implementation,” Energy Policy, vol. 37, no. 11, pp. 4379-4390, Jun. 2009.
    [6] H. Xing, M. Fu, Z. Lin, and Y. Mou, “Decentralized Optimal Scheduling for Charging and Discharging of Plug-In Electric Vehicles in Smart Grids,” IEEE Trans. Power Syst., vol. 31, no. 5, pp. 4118-4126, Sep. 2016.
    [7] H. Zhang, Z. Hu, Z. Xu, and Y. Song, “Evaluation of Achievable Vehicle-to-Grid Capacity Using Aggregate PEV Model,” IEEE Trans. Power Syst., vol. 32, no. 1, pp. 784-794, Jan. 2017.
    [8] Z. Ma, D. S. Callaway, and I. A. Hiskens, “Decentralized Charging Control of Large Population of Plug-in Electric Vehicles,” IEEE Trans. Control Syst. Technol., vol. 21, no. 1, pp. 67-78, Jan. 2013.
    [9] L. Zhang and Y. Li, “A Game-Theoretic Approach to Optimal Scheduling of Parking-Lot Electric Vehicle Charging,” IEEE Trans. Veh. Technol, vol. 65, no. 6, pp. 4068-4078, Jun. 2016.
    [10] N. Z. Xu, and C. Y. Chung “Challenges in Future Competition of Electric Vehicle Charging Management and Solutions,” IEEE Trans. Smart Grid, vol. 6, no. 3, pp. 1323-1331, May. 2015.
    [11] H. K. Nguyen and J. B. Song, “Optimal Charging and Discharging for Multiple PHEVs with Demand Side Management in Vehicle-to-Building,” Journal of Communications and Networks, vol. 14, no. 6, pp. 662-670, Dec. 2012.
    [12] M. Tabari, and A. Yazdani, “An Energy Management Strategy for a DC Distribution System for Power System Integration of Plug-In Electric Vehicles,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 659-667, Mar. 2016.
    [13] Y. He, B. Venkatesh, and L. Guan, “Optimal Scheduling for Charging and Discharging of Electric Vehicles,” IEEE Trans. Smart Grid, vol. 3, no. 3, pp. 1095-1105, Sep. 2012.
    [14] S. Gao, K. T. Chau, C. Liu, D. Wu, and C. C. Chan, “Integrated Energy Management of Plug-in Electric Vehicles in Power Grid With Renewables,” IEEE Trans. Veh. Technol, vol. 63, no. 7, pp. 3019-3027, Sep. 2014.
    [15] E. L. Karfopoulos, and N. D. Hatziargyriou, “Distributed Coordination of Electric Vehicles Providing V2G Services,” IEEE Trans. Power Syst., vol. 31, no. 1, pp. 329-337, Jan. 2016.
    [16] G. Romp, Game Theory: Introduction and Applications, Oxford, UK: Oxford University Press, pp. 8-10 and 29-38, 1997.
    [17] L. Jain, H. Xue, G. Xu, X. Zhu, D. Zhao, and Z. Y. Shao, “Regulated Charging of Plug-in Hybrid Electric Vehicles for Minimizing Load Variance in Household Smart Microgrid,” IEEE Trans. Ind. Electron., vol. 60, no. 8, pp. 3218-3226, Aug. 2013.
    [18] S. Han, S. Han, and K. Sezaki, “Development of an optimal vehicle-to-grid aggregator for frequency regulation,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 65-72, Jun. 2010.
    [19] M. Falahi, H. M. Chou, M. Ehsani, L. Xie, and K. L. Butler-Purrt, “Potential Power Quality Benefits of Electric Vehicles,” IEEE Trans. Sustain. Energy, vol. 4, no. 4, pp. 1016-1023, Oct. 2013.
    [20] W. Hu, C. Su, Z. Chen, and B. Bak-Jensen, “Optimal Operation of Plug-In Electric Vehicles in Power Systems With High Wind Power Penetrations,” IEEE Trans. Sustain. Energy, vol. 4, no. 3, pp. 577-585, Jul. 2013.
    [21] J. Hu, S. You, M. Lind, and J. Østergaard, “Coordinated Charging of Electric Vehicles for Congestion Prevention in the Distribution Grid,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 703-711, Mar. 2014.
    [22] V. M. Shiljkuta and N. Lj. Rajakovica, “Demand response capacity estimation in various supply areas,” Energy, vol. 92, no. 3, pp. 476-486, Dec. 2015.
    [23] D. Kettles, “Electric Vehicle Charging Technology Analysis And Standard,” FSEC, Cocoa, FL, Rep. FSEC-CR-1996-15, Feb. 2015. [Online]. Available: http://www.fsec.ucf.edu/en/publications/pdf/FSEC-CR-1996-15.pdf. [Accessed 8 Jul. 2017].
    [24] 電動汽車傳輸充電用連接裝置 第1部分:通用要求, GB/T 20234.1-201x, 2014. [Online]. Available: http://www.catarc.org.cn/Upload/file/bzyj/PDF/zhengqiuyijian-sc27-37.1(1).pdf. [Accessed 8 Jul. 2017].
    [25] 電動車輛傳導式充電系統-第2部:介面要求, CNS15511-2, 2011. [Online]. Available: http://www.cnsonline.com.tw/. [Accessed 8 Jul. 2017].
    [26] “ENERGY STAR Market and Industry Scoping Report: Electric Vehicle Supply Equipment,” Energy Star, the U.S., Sep. 2013. [Online]. Available: https://www.energystar.gov/sites/default/files/asset/document/Electric_Vehicle_Scoping_Report.pdf. [Accessed 8 Jul. 2017].
    [27] B. Berman, “The Real Price of EV Public Charging,” Sep. 2014. [Online]. Available: http://www.plugincars.com/guide-to-public-charging-costs.html. [Accessed 8 Jul. 2017].
    [28] 台灣電力公司, 需量反應負載管理措施, Jan. 2017. [Online]. Available: http://www.taipower.com.tw/UpFile/_userfiles/file/0-106年「需量反應負載管理措施」修正條文.pdf. [Accessed 8 Jul. 2017].
    [29] 台灣電力公司, 需量競價措施, Jan. 2017. [Online]. Available: http://www.taipower.com.tw/UpFile/PowerSavFile/3.2需量競價措施DM_106.01.10.pdf. [Accessed 8 Jul. 2017].
    [30] R. B. Myerson, Game theory : analysis of conflict, Cambridge, MA: Harvard University Press, pp. vii-xi, 1997.
    [31] A. Yona, T. Senjyu, A. Y. Saber, T. Funabashi, H. Sekine, and C.-H. Kim, “Application of Neural Network to One-Day-Ahead 24 hours Generating Power Forecasting for Photovoltaic System,” in Proc. 2007 IEEE Int. Conf. Intelligent Systems Applicat. to Power Systems (ISAP 2007), pp. 1-6, 2007.
    [32] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, pp. 179–211, 1990.
    [33] J. Wang, J. Wang, W. Fang, and H. Niu, “Financial Time Series Prediction Using Elman Recurrent Random Neural Networks,” Comput. Intell. Neurosci., 2016.
    [34] R. Storn and K. Price, “Differential Evolution - A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces,” J. Global Optim., vol. 11, pp. 341-359, 1997.
    [35] A. W. Iorio and X. Li, “Solving Rotated Multi-objective Optimization Problems Using Differential Evolution,” in Proc. 2004 17th Australian Joint Conference on Artificial Intelligence (IJCAI 2004), pp. 861-872, 2004.
    [36] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, “Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems,” IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646-657, Dec. 2006.
    [37] J. B. Rosen, “Existence and uniqueness of equilibrium points for concave N-Person games,” Econometrica, vol. 33, no. 3, pp. 520-534, Jul. 1965.
    [38] 台灣電力公司, 詳細電價表, May 2016. [Online]. Available: http://www.taipower.com.tw/UpFile/_userfiles/file/詳細電價表(2).pdf. [Accessed 8 Jul. 2017].
    [39] PJM, Daily Real-Time LMP. [Online]. Available: http://www.pjm.com/markets-and-operations/energy/real-time/lmp.aspx. [Accessed 8 Jul. 2017].
    [40] S. Beer, T. Gomez, D. Dallinger, I. Momber, C. Marnay, M. Stadler, and J. Lai, “An Economic Analysis of Used Electric Vehicle Batteries Integrated Into Commercial Building Microgrids,” IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 517-525, Mar. 2012.
    [41] Next Green Car, Plug-in hybrid cars (PHEV). [Online]. Available: http://www.nextgreencar.com/plugin-hybrid-cars/. [Accessed 8 Jul. 2017].

    下載圖示 校內:2022-08-03公開
    校外:2022-08-03公開
    QR CODE