簡易檢索 / 詳目顯示

研究生: 林瑋倫
Lin, Wei-lun
論文名稱: 使用量子井結構來改善藍光有機二極體之效能
To improve the Performance of Blue Organic Light-Emitting Diode Based on Quantum Well Stucture
指導教授: 蘇炎坤
Su, Yan-kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 63
中文關鍵詞: 量子井二極體藍光
外文關鍵詞: quantum well, blue, diode
相關次數: 點閱:52下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雖然在無機半導體領域的發光二極體常使用多層量子井結構來增強效能,但是值得注意的是,幾乎沒有論文討論到使用多層量子井結構來製造藍光有機發光二極體.在此研究中,多層量子結構將被應用在藍光有機發光二極體上.元件的結構已經被最佳化,包含各層的厚度以及量子井的對數.藉由最佳化的厚度及兩對的量子井結構,可以觀察到激子被有效地侷限在不同層並且獲得23%的效能提升.從兩對量子井結構的元件中,我們可以獲得最大亮度為7799 cd/m2以及最大效率為1.39 cd/A.兩對量子井的元件結構如下:ITO/ NPB (700 Å)/ MADN (100 Å) / NPB (50 Å)/ MADN (100 Å) / BCP (50
    Å)/ Alq3 (400 Å) / LiF (5 Å) / Al (2000 Å).

    Although, multi-quantum well structures are very popular to enhancethe efficiency in the compound semiconductor based light emitting diodes(LED), it is worth nothing that there is few report, particularly in blue organic LED systems. In this study, multi-quantum well structures in blue emitted system are fabricated. The device structures are optimized with respect to layer thickness and number of pairs forming the quantum wells. It is observed that due to better confinement of excitons in different layers the efficiency is enhanced by 23% using optimized thickness parameters and 2 pairs of quantum well
    structures. The maximum luminance was 7799 cd/m2
    and the maximum efficiency was 1.39 cd/A in the device with 2 period quantum well structure. The device of 2 period quantum well structure was listed as following: ITO/ NPB (700 Å)/ MADN (100 Å) / NPB (50 Å)/ MADN (100 Å) / BCP (50 Å)/ Alq3 (400 Å) / LiF (5 Å) / Al (2000 Å).

    Abstract (in Chinese)............I Abstract (in English)...........II Acknowledgement................III Content.........................IV Table Captions.................VII Figure Captions...............VIII Chapter 1 Introduction 1-1 Brief history of organic electroluminescent devices…1 1-2 The advantages of organic light emitting diodes………1 1-3 The applications of organic light emitting diode……3 Chapter 2 Principle of organic light emitting diodes 2-1 The structure of organic light emitting diode…………4 2-1-1 Anode…………………………………………………5 2-1-2 Hole injection layer (HIL)……………………………6 2-1-3 Hole-transporting layer (HTL)…………………………6 2-1-4 Emitting layer (EML)…………………………………6 2-1-5 Electron-transporting layer (ETL)……………………7 2-1-6 Hole-blocking layer…………………………………7 2-1-7 Buffer layer……………………………………………8 2-1-8 Cathode…………………………………………………8 2-2 The theory of organic light emitting diode 2-2-1 HOMO and LUMO……………………………………9 2-2-2 Energy transfer mechanism…………………………10 2-2-3 Exciplex and excimer charge transfers……………12 2-3 Types of quantum well……………………………………12 Chapter 3 Experimental systems and procedures 3-1 Experimental system 3-1-1 Deposition system…………………………………14 3-1-2 Measurement system…………………………………15 3-2 Materials used in this study………………………18 3-3 Experimental procedures 3-3-1 The treatment of substrate…………………………20 3-3-2 Deposition of organic thin films…………………21 3-3-3 Deposition cathode……………………………………22 Chapter 4 Results and discussions 4-1 Blue conventional organic light emitting diode…23 4-2 Blue organic light emitting diode with quantum well Structure……………………………………………32 4-2-1 The proper material of potential barrier……32 4-2-2 The proper thickness of each layer in the organic light emitting diode with quantum well structure……………43 4-2-3 Comparison between the conventional organic light emitting diode and that with quantum well structure…52 Chapter 5 Conclusion and future work 5-1 Conclusion…………………………………………………57 5-2 Future work………………………………………………57 References………………………………………………………59

    [1] J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, Synth. Met., 114, 251 (2000).
    [2] A. Andersson, N. Johansson, P. Broms, N. Yu, D. Lupo, and R. Salaneck, Adv. Mater., 10, 857 (1998).
    [3] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett., 78, 1050 (2001).
    [4] A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett., 78, 3343 (2001).
    [5] T. Ishida, H. Kobayashi, and Y. Nakato, J. Appl. Phys., 73, 4344 (1993).
    [6] M. Bender, J. Trube, and J. Stollenwerk, Appl. Phys. A, 69, 397 (1999).
    [7] T. Futagami, Y. Shigesato, and I. Yasui, J. J. Appl. Phys., 37, 6210 (1998).
    [8] T. Maruyama , K. Fukui, Thin Solid Films, 203, 297 (1991).
    [9] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, Appl. Phys. Lett., 70, 2741 (1997).
    [10] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70, 1348 (1997).
    [11] I. M. Chan, W. C. Cheng, and F. C. Hong, Appl. Phys. Lett., 80, 13 (2002).
    [12] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A:Mater. Sci. Process., 68, 447 (1999).
    [13] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lu, R. N. S. Sodhi, A-M. Hor and H. Aziz, Appl. Phys. Lett.,78, 2595 (2001).
    [14] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
    [15] Y. Shirota, Y. Kuwabara, H. I. T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, Appl. Phys. Lett., 65, 807 (1994).
    [16] Y. Hamada, N. Matsusue, H. Kanno, H. Fujii, T. Tsujioka and H. Takahashi, J. J. Appl. Phys. Lett., 40, L753 (2001).
    [17] D. Heithecker, A.Kammoun, T. Dobbertin, T. Riedl, E.Becker, D. Metzdorf, D. Schneider, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett., 82, 4178 (2003).
    [18] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, Synth. Met., 111, 139 (2000).
    [19] C. Giebeler, H. Antoniadis, Donal D. C. Bradley, Y. Shirota, J. Appl. Phys., 85, 608 (1999).
    [20] C. W. Tang, S. A. VanSlyke, and C. H. Chen, Appl. Phys. Lett., 65, 3610 (1989).
    [21] U. Mitschke and P. Bäuerle, J. Mater. Chem., 10, 1471 (2000).
    [22] Y. Kijima, N. Asai and S. I. Tamura, J. J. Appl. Phys., 38, 5274 (1999).
    [23] R. S. Deshpande, V. Bulovic, and S. R. Forrest, Appl. Phys. Lett.,75, 888 (1999).
    [24] Y. Gao, L. Wang, D. Zhang, L. Duan, G. Dong, and Y. Qiu, Appl. Phys. Lett., 82, 155 (2003).
    [25] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett., 74, 2227 (2003).
    [26] C. Qiu, Z. Xie, H. Chen, M.Wong, and H. S. Kwok, J. Appl. Phys.,93, 3253 (2003).
    [27] Ch. Jonda, A. B. R. Mayer, and W. Grothe, J. Appl. Phys., 85, 6884 (1999).
    [28] T. M. Brown, R. H. Friend, I. S. Millard, D. J. Lacey, J. H. Burroughes, and F. Cacialli, Appl. Phys. Lett., 79, 174 (2001).
    [29] L. S. Hung, C. W. Tang, and M. G.. Mason, Appl. Phys. Lett., 70, 152 (1997).
    [30] J. M. Bharathan and Y. Yang, J. Appl. Phys., 84, 3207 (1998).
    [31] M. Stössel, J. Staudigel, F. Steuber, J. Simmerer, and A. Winnacker, Appl. Phys. A: Mater. Sci. Process. 68, 387 (1999).
    [32] S. C. Kim, S. N. Kwon, M. W. Choi, C. N. Whang, K. Jeong, S. H. Lee, J. G. Lee and S. Kim, Appl. Phys. Lett., 79, 3276 (2001).
    [33] M. Matsumura, A. Ito, and Y. Miyamae, Appl. Phys. Lett., 75, 1042 (1999).
    [34] L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett., 70, 152 (1997).
    [35] M. Matsumura and Y. Jinde, Appl. Phys. Lett., 73, 2872 (1998).
    [36] X. Yang, Y. Mo, W. Yang, G.. Yu, and Y. Cao, Appl. Phys. Lett., 79, 563 (2001).
    [37] A. Misra, P. Kumar, M. N. Kamalasanan and S. Chandra, Semicond. Sci. Technol. 21, R35–R47 (2006).
    [38] J. Kido, H. Shionoya, and K. Nagai, Appl. Phys. Lett., 67, 2281 (1995).
    [39] L. Wang, G.. Lei, and Y. Qiu, J. Appl. Phys., 97, 114503 (2005).
    [40] M. Mazzeo, D. Pisignano, L. Favaretto, G.. Sotgiu, G.. Barbarella, R. Cingolani ,and G. Gigli, Synth. Met., 139, 675 (2003).
    [41] S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, and K. Müllen, Appl. Phys. Lett., 71, 2883 (1997)
    [42] H. A. Al. Attar, A. P. Monkman, M. Tavasli, S. Bettington, and M. R. Bryce, Appl. Phys. Lett., 86, 121101 (2005).
    [43] C. I. Chao and S. A. Chen, Appl. Phys. Lett., 73, 426 (1998).
    [44] B.W. DAndrade, J. Brooks, V. Adamovich, M.E. Thompson, and S.R. Forrest, Adv. Mater., 14, 1032 (2002).
    [45] J. Thompson, R. I. R. Blyth, M. Mazzeo, M. Anni, G. Gigli, and R. Cingolani, Appl. Phys. Lett., 79, 560 (2001).
    [46] M. Cocchi, D. Virgili, G. Giro, V. Fattori, P. Di Marco, J. Kalinowski, and Y. Shirota, Appl. Phys. Lett., 80, 2401 (2002).
    [47] Liduo WANG, Yudi GAO, Ying KAN, Zhibiao SHU and Yong QIU, Jpn. J. Appl. Phys., Vol. 43, No. 1A/B (2004).
    [48] Meng-Huan Ho, Yao-Shan Wu, Shih-Wen Wen, Meng-Ting Lee, and Teng-Ming Chen, Appl. Phys. Lett. 89, 252903 (2006).
    [49] Won-Ju Shin, Jin-Heon Kim, Min-Cheol Oh, Jae Chang Kim, and Tae-Hoon Yoon, Proc. of SPIE Vol. 6355 635519-1 (2006).
    [50] Jingsong Huang, Kaixia Yang, and Shiyong Liu, Appl. Phys. Lett., Vol. 77, No. 12, 18 September (2000).
    [51] Haiyan An, Baijun Chen, Jingying Hou, Jiacong Shen and Shiyong Liu, J. Phys. D: Appl. Phys. 31 (1998).
    [52] D.W. Zhao, S.F. Song, S.L. Zhao, F.J. Zhang, and Z. Xu, Microelectronics Journal 38 (2007).
    [53] HUANG Jin-zhao and XU Zheng, Optoelectron. Lett. Vol.3 No.1 (2007).
    [54] Jin-Zhao Huang, Zheng Xu , Su-Ling Zhao, Fu-Jun Zhang, and Yong Wang, Applied Surface Science 253 (2007).
    [55] D.W. Zhao, S.F. Song, F.J. Zhang, S.L. Zhao, C. Xu, and Z. Xu, Displays 28 (2007).
    [56] Gang CHENG, Song QIU, Feng LI, Jing FENG, Yuguang MA1 and Shiyong LIU, Jpn. J. Appl. Phys. Vol. 42 (2003).
    [57] D W Zhao, S F Song, S L Zhao, F J Zhang, Z Xu and X R Xu, J. Phys. D: Appl. Phys. 40 (2007).
    [58] Sung Hyun Kim and Jyongsik Jang, Appl. Phys. Lett. 90, 173501 (2007).

    下載圖示 校內:2011-06-30公開
    校外:2013-06-30公開
    QR CODE