簡易檢索 / 詳目顯示

研究生: 林志民
Lin, Chih-Ming
論文名稱: C頻段低雜訊放大器與功率放大器之研製
Design of C-Band Low Noise Amplifier and Power Amplifier
指導教授: 許渭州
Hsu, Wei-Chou
吳昌崙
Wu, Chang-Luen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 105
中文關鍵詞: 功率放大器低雜訊放大器
外文關鍵詞: IMFET, Balanced Amplifier, Power Amplifier, Low Noise Amplifier
相關次數: 點閱:122下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要著眼於C頻段低雜訊放大器與功率放大器之研製。在通訊系統的接收端與傳輸端中,低雜訊放大器與功率放大器是相當重要的零組件。而由於資料傳輸的速度要求愈來愈快,許多應用於C頻段無線傳輸的系統快速而廣泛的發展。在設計方法上,我們採用混成微波積體電路(Hybrid MIC)及微帶線(microstrip line)的架構,並將匹配電路製作於氧化鋁基板上。
    低雜訊放大器的設計,包含兩級的混成微波積體電路低雜訊模組,組裝於housing中。為了同時得到最低的雜訊指數與極佳的輸入和輸出電壓駐波比,模組的設計主要利用兩個300μm砷化鎵擬晶型高電子移動率場效電晶體 (pHEMT),以平衡式放大器的結構來實現。在5.3到5.9 GHz的頻率範圍,模組的雜訊指數為0.9dB,小訊號增益為12dB。而整體放大器的雜訊指數低於0.95dB,增益超過23.5dB。此低雜訊放大器顯示極佳的雜訊特性,適用於C頻段無線區域網路及ISM頻段的應用。
    功率放大器的設計,乃選用12mm砷化鎵擬晶型高電子移動率場效電晶體為主動元件,並採用電晶體內部匹配的結構來匹配功率元件極低的輸入及輸出阻抗。而為了達到理想的功率匹配,以獲得最大的功率輸出,我們利用Cripps的負載線理論來選取最佳負載。在5.7到6.3GHz的頻率範圍,功率放大器的輸出功率為36dBm,相關的附加功率效率為40%,功率增益為10dB。

    This thesis presents the design and implementation of C-band low noise amplifier and power amplifier. In the communication system, low noise amplifier and power amplifier are the key components at the receiving and transmitting end. Due to high data rate requirement, many C-band wireless applications have been proposed and developed. Hybrid MIC ( Microwave Integrated Circuit ) and microstrip-line configuration are employed in this design. Matching networks are realized on the alumina substrates.
    The low noise amplifier was realized in a housing which was comprised of two MIC low noise modules. In order to achieve minimum noise figure and good input and output VSWR ( Voltage Standing-Wave Ratio ) simultaneously, each module was developed with balanced amplifier configuration using two discrete 300μm GaAs pHEMTs. The module was assembled on a Kovar carrier. It attains 0.9 dB noise figure and 12 dB small signal gain from 5.3 to 5.9 GHz band. The complete amplifier reveals noise figure as low as 0.95 dB with associated gain over 23.5 dB from 5.3 to 5.9 GHz. This low noise amplifier shows excellent noise performance enough for various C-band applications such as high data rate wireless LAN ( Local Area Network ) and ISM ( Industrial, Scientific, and Medical ) applications.
    The power amplifier was developed using 12 mm GaAs pHEMT device. It delivers over 4 watt of output power from 5.7 to 6.3 GHz band, with 10 dB power gain and 40% power-added efficiency. The design employed the internally matched FET approach to match the lower input and output impedance of the power device. To achieve optimum power match, we utilized Cripps’s load-line theory to predict optimum output impedance. The complete amplifier was mounted on a CuW carrier. This power amplifier is intended to be used in the transceiver for C-band wireless and satellite communication systems.

    Abstract (Chinese) Abstract (English) Table Captions Figure Captions Chapter 1 Introduction................................................1 1.1 Introduction .....................................................1 1.2 Chapter Outline...................................................3 Chapter 2 Principles of Microwave Amplifier Design....................5 2.1 Introduction......................................................5 2.2 Scattering Parameters.............................................6 2.3 Power Gain and Stability..........................................8 2.3.1 Power Gain......................................................8 2.3.2 Stability Considerations........................................9 2.4 Noise ...........................................................11 2.4.1 Noise in Two-Port Networks.....................................12 2.4.2 Noise Factor and Noise Figure..................................13 2.4.3 Noise Figure of a Cascaded System..............................14 2.5 Noise Match and Constant Noise Figure Circles....................15 2.6 Distortion and Linearity.........................................18 2.7 Dynamic Range and 1-dB Compression Point.........................19 2.8 Efficiency of Power Amplifier ...................................20 2.9 DC Bias..........................................................20 Chapter 3 C-Band MIC Low Noise Amplifier.............................32 3.1 Overview.........................................................32 3.2 Circuit Description..............................................33 3.3 Specifications...................................................33 3.4 Choose a Topology................................................33 3.5 Device Selection.................................................35 3.6 Noise Match and Noise Model......................................36 3.7 Circuit Design...................................................36 3.8 Simulation Results...............................................38 3.9 Layout and Fabrication...........................................39 3.10 Measurement and Analysis........................................40 3.10.1 DC Analysis...................................................40 3.10.2 Gain and Return Loss Measurement..............................40 3.10.3 Noise Figure Measurement......................................41 3.10.4 Output Power Measurement......................................41 3.11 Measurement Results.............................................42 3.12 Summary.........................................................43 Chapter 4 C-Band 4 Watt MIC Power Amplifier..........................69 4.1 Overview.........................................................69 4.2 Circuit Description..............................................69 4.3 Specifications...................................................70 4.4 Class of Operation and Bias Points...............................70 4.5 Device Selection.................................................71 4.6 Design Techniques................................................72 4.6.1 Load-Pull......................................................72 4.6.2 Nonlinear Model................................................73 4.6.3 Cripps Method..................................................74 4.7 Power Model and Power Match......................................75 4.7.1 Calculation of Ropt............................................76 4.7.2 Power Model....................................................76 4.8 Circuit Design...................................................76 4.9 Simulation Results...............................................77 4.10 Layout and Fabrication..........................................78 4.11 Measurement Results.............................................79 4.12 Summary.........................................................79 Chapter 5 Conclusion................................................100 References..........................................................103

    [1] Mike Golio,“The RF and Microwave Handbook”, CRC Press, 2001.
    [2] E. Bayar, A. H. Aghrami,“Miniaturized L-band MIC LNA Design”, Electron
    Letters, vol.29, pp. 1698-1699, Sept. 1993.
    [3] B. G. Choi, Y. S. Lee, C. S. Park, K. S. Yoon,“Super Low Noise C-Band
    PHEMT MMIC Low Noise Amplifier with Minimum Input Matching Network”,
    Electronics Letters, vol.36, pp. 1627-1629, Sept. 2000.
    [4] B. G. Choi, Y. S. Lee, C. S. Park, K. S. Yoon,“A Low Noise On-Chip Matched
    MMIC LNA of 0.76 dB Noise Figure at 5 GHz for High Speed Wireless LAN
    Applications”, IEEE GaAs Digest, pp. 143-146, 2000.
    [5] Fazal Ali and Alitya Gupta,“HEMTs and HBTs; Devices, Fabrication, and
    Circuits”, Artech House, 1991.
    [6] Y. Arai, M. Sato, H. T. Yamada, T. Hamada, K. Nagai, H. I. Fujishiro,“60-GHz
    Flip-Chip Assembled MIC Design Considering Chip-Substrate Effect”, IEEE
    Trans. Microwave Theory Tech., vol. 45, pp. 2261-2266, Dec. 1997.
    [7] G. Gonzales, Microwave Transistor Amplifiers Analysis and Design”, Prentice
    Hall, New Jersey, 1984.
    [8] D. M. Pozar,“Microwave Engineering”, 2nd ed., John Wiley and Sons, 1996.
    [9] Allen A. Sweet,“MIC and MMIC Amplifier and Oscillator Circuit Design”,
    Artech House, 1990.
    [10] I. Bahl and P. Bhartia,“Microwave Solid-State Circuit Design”, Wiley
    Interscience, New York, 1988.
    [11] Raymond S. Pengelly,“Microwave Field-Effect Transistors:Theory, Design,
    and Applications”, 3rd ed., Noble, 1994.
    [12] Devendra K. Mirsa, “Radio-Frequency and Microwave Communication Circuits
    Analysis and Design”, John Wiley and Sons, 2001.
    [13] Behzad Razavi,“RF Microelectronics”,Prentice Hall, New Jersey, 1998.
    [14] Steven. C. Cripps,“RF Power Amplifiers for Wireless Communications”, Artech House, 1999.
    [15] Y. Tsukahara, S. Chaki, Y. Sasaki, K. Nakahara, N. Andoh, h. Mastsubayasi, N.
    Tanino, O. Ishihara,“A C-Band 4-stage Low noise Miniaturized Amplifier Using
    Lumped Elements”, IEEE MTT-S Digest, vol.3, pp. 1125-1128, May, 1994.
    [16] 魏淑芬,“毫米波接收端單晶積體電路之研製”, 國立臺灣大學電信工程研究所碩士論文, 民國90年。
    [17] 郭柏偉,“回授式低雜訊放大器及分散式放大器之研製”, 國立臺灣大學電信工程研究所碩士論文, 民國89年。
    [18] John L. B. Walker,“High-Power GaAs FET Amplifiers”, Artech House, 1993.
    [19] George D. Vendelin, Anthony M. Pavio, Ulrich L. Rohde,“Microwave Circuit
    Design Using Linear and Nonlinear Techniques”, John Wiley & Sons, 1990.
    [20] Pang T. Ho, “A 7 Watt C-Band FET Amplifier Using Serial Power Combining
    Techniques”, IEEE MTT-S Digest, pp. 142-144, 1978.
    [21] C. H. Chen, H. C. Yen, K. Tan, L. Callejo, G. Onak, D. C. Streit, P. H. Lin,
    J. M. Schellenberg,“20 GHz High Power High Efficiency HEMT Module”, IEEE
    MTT-S Digest, pp. 1377-1380, 1993.
    [22] J. M. Schellenberg, K. L. Tan, R. W. Chan, C. H. Chen, T. S. Lin, D. C.
    Streit, P. H. Lin, “A 0.8 Watt Ka-Band Power Amplifier”, IEEE MTT-S Digest,
    pp. 529-532, 1992.
    [23] G. S. Dow, K. Tan, H. Ton, J. Abell, M. Siddiqui, B. Gorospe, D. Streit, P.
    Lin, M. Sholley,“Ka-Band High Efficiency 1 Watt Power Amplifier”, IEEE
    MTT-S Digest, pp. 579-582, 1992.
    [24] 劉啟全,“5GHz微波單晶積體電路功率放大器之設計製作”, 國立成功大學微電子工程
    研究所碩士論文, 民國91年。
    [25] S. Yanagawa, K. Takagi, Y. Yamada,“5-GHz Band 30 Watt Power GaAs Amplifier ”, IEEE MTT-S Digest, pp. 985-987, 1990.
    [26] S. T. Fu, J. J. Komiak, L. F. Lester, K. H. G. Duh, P. M. Smith, P. C. Chao,
    T. H. Yu,“C-Band 20 Watt Internally Matched GaAs Based Pseudomorphic HEMT
    Power Amplifier”, GaAs IC Symposium, pp. 355-358, 1993.
    [27] R. G. Freitag, S. H. Lee, D. M. Krafcsik, D. E. Dawson, J. E. Degenford,
    Stability and Improved Circuit Modeling Considerations for High Power MMIC
    Amplifiers”, IEEE 1988 Microwave and Millimeter-Wave Monolithic Circuits
    Symposium, pp. 125-128, 1988.

    下載圖示 校內:2004-06-26公開
    校外:2004-06-26公開
    QR CODE