簡易檢索 / 詳目顯示

研究生: 王麗鈞
Wang, Li-Jun
論文名稱: 以脈衝電鍍法與硫化製備銅鋅錫硫(Cu2ZnSnS4)薄膜太陽電池材料之研究
Cu2ZnSnS4 Thin Films Preparation Using Pulsed Electrodeposition and Sulfurization
指導教授: 丁志明
Ting, Jyh-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 87
中文關鍵詞: 銅鋅錫硫電鍍脈衝硫化鋅太陽能電池
外文關鍵詞: CZTS, electrodeposition, pulse, ZnS, solar
相關次數: 點閱:87下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無毒害且較低成本之銅鋅錫硫 Cu2ZnSnS4薄膜太陽電池,成為最具潛力取代CIGS薄膜太陽電池的材料。由於電鍍法製程簡單、不須真空設備及低成本等優點,所以本研究採用電鍍成長前導層(Zn/Sn/Cu/Mo與ZnS/Zn/Sn/Cu/Mo),再將前導層置於高溫爐管中以硫化氫氣氛於550℃進行硫化處理1.5小時。銅、錫、鋅以二極式電鍍系統以定電流法,而硫化鋅為化合物,使用三極式電鍍系統以定電位(壓)法。電鍍硫化鋅層時會改變其電解液配方、脈衝頻率以及總電鍍硫化鋅時間。電鍍硫化鋅層的目的是提高膜的品質,亦即提高膜的晶粒大小及平整度,預期得到與電子束蒸鍍法相同的結果。
    SEM分析、TEM分析與GIXRD分析對前驅物進行表面形貌分析、微結構量測、以及結晶結構量測以及研究其硫化後Cu2ZnSnS4薄膜之SEM觀察薄膜表面型態及橫截面影像、TEM分析來檢視薄膜的微結構、拉曼光譜儀來分析薄膜的結構、UV/VIS/NIR光譜儀來分析薄膜的光學性質以及GIXRD來分析薄膜的結晶結構。
    將ZnS/Zn/Sn/Cu/Mo前驅物硫化後,所得Cu2ZnSnS4薄膜之表面形貌平整度較佳且晶粒尺寸較大,相較於Zn/Sn/Cu/Mo前驅物硫化後所得Cu2ZnSnS4薄膜。由Raman分析知道硫化後所得薄膜並非純Cu2ZnSnS4,還包含Cu2SnS3、Cu¬3SnS4、SnS化合物。在準備前驅物時,將電鍍硫化鋅時間拉長,則將其硫化後所得之薄膜其Cu2ZnSnS4百分比增加,故其吸收係數增加。故得証在製備前驅物時,除了元素層(銅、錫、鋅),另外增加一層硫化鋅(ZnS)有助於硫化時Cu2ZnSnS4之形成。

    Cu2ZnSnS4 (CZTS) thin film solar cell is a low cost, environmental harmless solar cell. In this study, various precursor films containing Cu, Zn, Sn, and S were first obtained by the electrodeposition of Cu , Sn, Zn, and ZnS in sequence on Mo-coated glass substrates. For electrodeposition of Cu, Sn, and Zn, these three processes are under 2-electrode system and we have deposited ZnS on Zn/Sn/Cu/Mo by 3-electrode electrochemical depositon during preparing precursor films. The deposition of ZnS was aimed to enhance the film quality, anticipating to receive the same advantage, i.e., improved surface morphologies and grain sizes, as the precursor films obtained using electron-beam evaporation. After sulfurizing the precursor film of ZnS/Zn/Sn/Cu/Mo, we get larger grains, higher absorption coefficients, and smoother morphologies of Cu2ZnSnS4 than the sulfurized Zn/Sn/Cu/Mo. From Raman fitting results, the sulfurized films is not pure CZTS. It has other compounds, such as Cu2SnS3,Cu¬3SnS4, and SnS. As the total depositing ZnS time increases when preparing the precursor, the Cu2SnS3% decreases which means that Cu2SnS3 reacts much more with the ZnS to form Cu2ZnSnS4. This is proved by the increasing Cu2ZnSnS4 % of the sulfurized thin films : NO, E99-10, E99-20, E99-30 and E99-40. As a result, it is proved that adding one more layer of ZnS during preparation of precursor films helps the formation of CZTS during sulfurization.

    摘要 I Abstract III 誌謝 XXV 總目錄 XXVI 表目錄 XXIX 圖目錄 XXX 第1章 緒論 1 1.1 前言 1 1.2 太陽能電池種類與發展現況 2 第2章 文獻回顧 6 2.1  I2–II–IV–VI4薄膜太陽能電池發展與結構 6 2.1.1基板(Substrate) 8 2.1.2背電極(Back Contact Layer) 9 2.1.3吸收層(Absorption Layer) 10 2.1.4緩衝層(Buffer Layer) 10 2.1.5窗層(Window Layer) 12 2.2 Cu2ZnSnS4太陽能電池工作原理 13 2.3 Cu2ZnSnS4材料特性 18 2.4 Cu2ZnSnS4薄膜製程與元件效率之發展 19 2.5 Cu2ZnSnS4成長路徑 21 2.6 研究動機與目的 21 第3章 實驗方法及分析儀器原理 23 3.1實驗藥品與材料 23 3.2 實驗儀器設備 24 3.3 實驗流程 25 3.4電鍍原理與系統 26 3.5硫化系統 28 3.6硫化反應熱處理之升溫曲線 29 3.7樣品特性分析方法及原理 30 3.7.1薄膜結晶結構分析 30 3.7.2薄膜表面與橫截面形貌觀察 31 3.7.3薄膜微結構分析 32 3.7.4微區拉曼光譜分析 32 3.7.5薄膜光學分析 33 3.7.6薄膜表面粗糙度分析 33 第4章 結果與討論 35 4.1 前驅物製備 35 4.1.1 Zn/Sn/Cu/Mo前驅物製備 35 4.1.2 ZnS/Zn/Sn/Cu/Mo前驅物製備 45 4.2 Cu2ZnSnS4製備 56 4.2.1硫化升溫曲線 56 4.2.2 表面形貌 57 4.2.3 TEM 微結構分析 63 4.2.4 表面粗糙度及GIXRD分析 65 4.2.5 ICP-MS分析 68 4.2.6 光學性質分析 70 4.2.7 拉曼分析 75 4.2.8 電性分析 80 第5章 結論 82 第6章 參考文獻 84

    1. Kentaro, I. and N. Tatsuo, Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films. Japanese Journal of Applied Physics, 27(11R): p. 2094. 1988.
    2. Katagiri, H., et al., Development of thin film solar cell based on Cu2ZnSnS4 thin films. Solar Energy Materials and Solar Cells, 65(1–4): p. 141-148. 2001.
    3. Katagiri, H., et al. Solar cell without environmental pollution by using CZTS thin film. in Photovoltaic Energy Conversion, 2003. Proceedings of 3rd World Conference on. 2003.
    4. Hironori, K., et al., Enhanced Conversion Efficiencies of Cu 2 ZnSnS 4 -Based Thin Film Solar Cells by Using Preferential Etching Technique. Applied Physics Express, 1(4): p. 041201. 2008.
    5. Mitzi, D.B., et al., The path towards a high-performance solution-processed kesterite solar cell. Solar Energy Materials and Solar Cells, 95(6): p. 1421-1436. 2011.
    6. Granath, K., M. Bodegård, and L. Stolt, The effect of NaF on Cu(In, Ga)Se2 thin film solar cells. Solar Energy Materials and Solar Cells, 60(3): p. 279-293. 2000.
    7. Romeo, A., et al., Development of thin-film Cu(In,Ga)Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 12(2-3): p. 93-111. 2004.
    8. Otte, K., et al., Flexible Cu(In,Ga)Se-2 thin-film solar cells for space application. Thin Solid Films, 511: p. 613-622. 2006.
    9. Scofield, J.H., et al., Sputtered molybdenum bilayer back contact for copper indium diselenide-based polycrystalline thin-film solar cells. Thin Solid Films, 260(1): p. 26-31. 1995.
    10. Assmann, L., et al., Study of the Mo thin films and Mo/CIGS interface properties. Applied Surface Science, 246(1-3): p. 159-166. 2005.
    11. Abou-Ras, D., et al., Formation and characterisation of MoSe2 for Cu(In,Ga)Se-2 based solar cells. Thin Solid Films, 480: p. 433-438. 2005.
    12. Tsai, W.-J., et al., Addition of Na into CuInS2 thin film via co-evaporation. Thin Solid Films, 519(5): p. 1712-1716. 2010.
    13. Banger, K.K., et al., Ternary single-source precursors for polycrystalline thin-film solar cells. Applied Organometallic Chemistry, 16(11): p. 617-627. 2002.
    14. Hamakawa, Y., Thin-film solar cells: next generation photovoltaics and its applications. 2004: Springer.
    15. Hariskos, D., S. Spiering, and M. Powalla, Buffer layers in Cu(In,Ga)Se2 solar cells and modules. Thin Solid Films, 480-481: p. 99-109. 2005.
    16. Lee, J.C., et al., RF sputter deposition of the high-quality intrinsic and n-type ZnO window layers for Cu(In,Ga)Se-2-based solar cell applications. Solar Energy Materials and Solar Cells, 64(2): p. 185-195. 2000.
    17. Xu, X.B., et al., High-quality intrinsic ZnO film for the application of solar cell grown by ICP-assisted reactive DC magnetron sputtering at low temperature. Surface Review and Letters, 14: p. 1083-1087. 2007.
    18. Yamaguchi, T., T. Tanaka, and A. Yoshida, Effect of substrate position in i-ZnO thin-film formation to Cu(In,Ga)Se-2 solar cell. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 20(5): p. 1755-1758. 2002.
    19. Contreras, M.A., et al., Progress toward 20% efficiency in Cu(In,Ca)Se-2 polycrystalline thin-film solar cells. Progress in Photovoltaics, 7(4): p. 311-316. 1999.
    20. Ramanathan, K., et al., Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells. Progress in Photovoltaics, 11(4): p. 225-230. 2003.
    21. Jeong, W.J., S.K. Kim, and G.C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell. Thin Solid Films, 506: p. 180-183. 2006.
    22. Marudachalam, M., et al., Preparation of homogeneous Cu(InGa)Se-2 films by selenization of metal precursors in H2Se atmosphere. Applied Physics Letters, 67(26): p. 3978-3980. 1995.
    23. Cooray, N.F., et al., Large area ZnO films optimized for graded band-gap Cu(InGa)Se-2-based thin-film mini-modules. Solar Energy Materials and Solar Cells, 49(1-4): p. 291-297. 1997.
    24. Hironori, K., et al., Characterization of Cu 2 ZnSnS 4 Thin Films Prepared by Vapor Phase Sulfurization. Japanese Journal of Applied Physics, 40(2R): p. 500. 2001.
    25. Schurr, R., et al., The crystallisation of Cu2ZnSnS4 thin film solar cell absorbers from co-electroplated Cu–Zn–Sn precursors. Thin Solid Films, 517(7): p. 2465-2468. 2009.
    26. Alvarez-Garcia, J., et al., Microstructure and secondary phases in coevaporated CuInS2 films: Dependence on growth temperature and chemical composition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(1): p. 232-239. 2001.
    27. Izquierdo-Roca, V., et al., Raman microprobe characterization of electrodeposited S-rich CuIn(S,Se)2 for photovoltaic applications: Microstructural analysis. Journal of Applied Physics, 101(10): p. 103517. 2007.
    28. Klenk, R., et al., Growth mechanisms and diffusion multinary and multilayer chalcopyrite thin-films. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 32: p. 57-61. 1993.
    29. Guillen, C., et al., Structure, morphology and optical properties of CuInS2 thin films prepared by modulated flux deposition. Thin Solid Films, 480: p. 19-23. 2005.
    30. Cayzac, R., et al., Preparation and optical absorption of electrodeposited or sputtered, dense or porous nanocrystalline CuInS2 thin films. Comptes Rendus Chimie, 11(9): p. 1016-1022. 2008.
    31. Altosaar, M., et al., Cu2Zn1–xCdx Sn(Se1–ySy)4 solid solutions as absorber materials for solar cells. physica status solidi (a), 205(1): p. 167-170. 2008.
    32. Fernandes, P.A., P.M.P. Salomé, and A.F. da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films, 517(7): p. 2519-2523. 2009.
    33. Himmrich, M. and H. Haeuseler, Far infrared studies on stannite and wurtzstannite type compounds. Spectrochimica Acta Part A: Molecular Spectroscopy, 47(7): p. 933-942. 1991.
    34. Fernandes, P.A., P.M.P. Salomé, and A.F. da Cunha, CuxSnSx+1 (x = 2, 3) thin films grown by sulfurization of metallic precursors deposited by dc magnetron sputtering. physica status solidi (c), 7(3-4): p. 901-904. 2010.
    35. Fernandes, P., P. Salomé, and A. da Cunha, A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. Journal of Physics D: Applied Physics, 43(21): p. 215403. 2010.
    36. Price, L.S., et al., Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass. Chemistry of Materials, 11(7): p. 1792-1799. 1999.
    37. Munce, C.G., et al., A Raman spectroelectrochemical investigation of chemical bath deposited CuxS thin films and their modification. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 295(1–3): p. 152-158. 2007.
    38. Jiménez Sandoval, S., et al., Raman study and lattice dynamics of single molecular layers of MoS2. Physical Review B, 44(8): p. 3955-3962. 1991.

    無法下載圖示 校內:2019-08-20公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE