| 研究生: |
楊嘉銘 Yang, Jia-Ming |
|---|---|
| 論文名稱: |
在離子液體中電鍍一維及類一維結構之電化學研究 Electrodeposition of one-dimensional and quasi-one-dimensional nanostructures from ionic liquid |
| 指導教授: |
孫亦文
Sun, I-Wen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 離子液體 、電鍍 、奈米線 |
| 外文關鍵詞: | ionic liquid, electrodeposition, nanowire |
| 相關次數: | 點閱:55 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文在溶液 zinc chloride-1-ethyl-3-methylimidazolium chloride(ZnCl2-EMIC)中,去探討(一)添加 NiCl2 在溶液中電鍍 NiZn 合金在鎢絲及(二)不同的比例及溫度下純 ZnCl2 -EMIC 溶液中電鍍 Zn 在鎳片和(三)加入FeCl2 、CoCl2 於溶液中電鍍三元 FeCoZn 合金在銅基材的電化學行為。然而不論是在哪個系統之下,往往在電位窗的過電位或接近電位窗的位置,利用定電位的結果會有一維(NiZn、FeCoZn)及類一維(Zn)的結構發生,並且過程中不需倚賴模板(template)的輔助,就能沿著基材垂直生長(NiZn、FeCoZn)或呈現倒塌的形貌(Zn),且所得的一維及類一維結構都能經由電量密度的增減,改變其長度大小。而電鍍的過程中溶液的狀態(靜止或攪拌)則是影響鍍層形貌的關鍵所在。
For the first time, direct template-free electrodeposition of aligned NiZn、FeCoZn nanofilaments and Zn quasi-one-dimensional nanostructures were achieved in a quiescent or a stirred (FeCoZn) Lewis acidic ZnCl2-EMIC solution when an extreme negative deposition potential was applied. The coordination chemistry of the chlorozincate ionic liquid provides a unique physicochemical environment near the growth solid-liquid interface allowing the formation of one-dimensional or quasi-one-dimensional metal nanostructures, and certainly opens new perspectives for template-free electrochemical synthesis of nanofilaments and quasi-one dimensinal structures.
1. J. S. Wilkes, Green Chem., 2002, 4, 73-80.
2. K. R. Seddon, A. Stark and M. J. Torres, Pure Appl. Chem., 2000, 72, 2275- 2287.
3. S. Kar, T. Ghoshal and S. Chaudhuri, Chem. Phys. Lett., 2006, 419, 174-178.
4. C. J. Brumlik and C. R. Martin, J. Am. Chem. Soc., 1991, 113, 3174-3175.
5. A. Drury, S. Chaure, M. Kroell, V. Nicolosi, N. Chaure and W. J. Blau, Chem. Mat., 2007, 19, 4252-4258.
6. V. Fleury, J. H. Kaufman and D. B. Hibbert, Nature, 1994, 367, 435-438.
7. X. P. Huang, W. Han, Z. L. Shi, D. Wu, M. Wang, R. W. Peng and N. B. Ming, Journal of Physical Chemistry C, 2009, 113, 1694-1697.
8. D. Pradhan, S. Sindhwani and K. T. Leung, Journal of Physical Chemistry C, 2009, 113, 15788-15791.
9. F. Endres, ChemPhysChem, 2002, 3, 144-+.
10. A. P. Abbott and K. J. McKenzie, Phys. Chem. Chem. Phys., 2006, 8, 4265- 4279.
11. M. Armand, F. Endres, D. R. MacFarlane, H. Ohno and B. Scrosati, Nature Materials, 2009, 8, 621-629.
12. F. Endres, A. P. Abbott and D. R. MacFarlane, Electrodeposition from Ionic Liquids, Wiley-VCH, Weiheim, 2008.
13. Y. T. Hsieh, T. I. Leong, C. C. Huang, C. S. Yeh and I. W. Sun, Chemical Communications, 2010, 46, 484-486.
14. M. J. Deng, T. I. Leong, I. W. Sun, P. Y. Chen, J. K. Chang and W. T. Tsai, Electrochemical and Solid State Letters, 2008, 11, D85-D88.
15. F. H. Yeh, C. C. Tai, J. F. Huang and I. W. Sun, Journal of Physical Chemistry B, 2006, 110, 5215-5222.
16. Y. W. Lin, C. C. Tai and I. W. Sun, Journal of the Electrochemical Society, 2007, 154, D316-D321.
17. X. D. Meng, R. Al-Salman, J. P. Zhao, N. Borissenko, Y. Li and F. Endres, Angewandte Chemie-International Edition, 2009, 48, 2703-2707.
18. C. Arnould, J. Delhalle and Z. Mekhalif, Journal of the Electrochemical Society, 2009, 156, K186-K190.
19. S. I. Hsiu, J. F. Huang, I. W. Sun, C. H. Yuan and J. Shiea, Electrochimica Acta, 2002, 47, 4367-4372.
20. A. J. Bard and L. R. Faulker, Electrochemical Methode:Fundamentals and Applications(2nd ed.), Jonh Wiley&Sons, New York, 2001.
21. J. S. Wilkes, J. A. Levisky, R. A. Wilson and C. L. Hussey, Inorganic Chemistry, 1982, 21, 1263-1264.
22. J. R. Sanders, The University of Mississippi, 1987.
23. S. P. Gou and I. W. Sun, Electrochimica Acta, 2008, 53, 2538-2544.
24. B. Grushko and G. R. Stafford, Scripta Metallurgica, 1989, 23, 557-562.
25. Y. F. Lin and I. W. Sun, Electrochimica Acta, 1999, 44, 2771-2777.
26. P. Y. Chen and I. W. Sun, Electrochimica Acta, 2001, 46, 1169-1177.
27. J. F. Huang and I. W. Sun, Journal of the Electrochemical Society, 2004, 151, C8-C14.
28. H. Y. Wu, Y. Zhao and Q. Z. Jiao, J. Alloy. Compd., 2009, 487, 591-594.
29. C. H. Li, Y. Zhao, K. F. Yao and J. Liang, Carbon, 2003, 41, 2443-2446.
30. W. Y. Fu, S. K. Liu, W. H. Fan, H. B. Yang, X. F. Pang, J. Xu and G. T. Zou, Journal of Magnetism and Magnetic Materials, 2007, 316, 54-58.
31. G. K. Mor, O. K. Varghese, M. Paulose, K. Shankar and C. A. Grimes, Solar Energy Materials and Solar Cells, 2006, 90, 2011-2075.
32. V. R. Almeida, C. A. Barrios, R. R. Panepucci and M. Lipson, Nature, 2004, 431, 1081-1084.
33. C. Yang, Z. H. Zhong and C. M. Lieber, Science, 2005, 310, 1304-1307.
34. Y. Cui, Q. Q. Wei, H. K. Park and C. M. Lieber, Science, 2001, 293, 1289-1292.
35. R. S. Wagner and W. C. Ellis, Applied Physics Letters, 1964, 89.
36. R. S. Wagner, VLS Mechanism of Crystal Growth, Wiley-Interscience, New York, 1970.
37. E. I. Givargizov, Journal of Crystal Growth, 1975, 31, 20-30.
38. A. I. Hochbaum, R. Fan, R. R. He and P. D. Yang, Nano Letters, 2005, 5, 457-460.
39. N. Wang, Y. F. Zhang, Y. H. Tang, C. S. Lee and S. T. Lee, Applied Physics Letters, 1998, 73, 3902-3904.
40. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee and S. T. Lee, Physical Review B, 1998, 58, 16024-16026.
41. N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello and S. T. Lee, Chem. Phys. Lett., 1999, 299, 237-242.
42. F. Keller, M. S. Hunter and D. L. Robinson, Journal of The Electrochemical Society, 1953, 100, 411-419.
43. L. F. Liu, H. F. Tian, S. S. Xie, W. Y. Zhou, S. C. Mu, L. Song, D. F. Liu, S. D. Luo, Z. X. Zhang, Y. J. Xiang, X. W. Zhao, W. J. Ma, J. Shen, J. Q. Li, C. Y. Wang and G. Wang, Journal of Physical Chemistry B, 2006, 110, 20158-20165.
校內:2013-08-03公開