| 研究生: |
顏銘信 Yan, Ming-Xin |
|---|---|
| 論文名稱: |
即時人體動作重建之身體感測網路研製及應用 Development of a Body Sensor Network for Real-Time Human Motion Reconstruction and Its Applications |
| 指導教授: |
王振興
Wang, Jeen-Shing |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 身體感測網路 、慣性感測 、人體動作重建 |
| 外文關鍵詞: | Body sensor network, Inertial sensing, Human Motion Reconstruction |
| 相關次數: | 點閱:60 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發基於微慣性感測器模組化的穿戴式身體感測網路用以即時人體動作重建。此微慣性感測模組包含了微控制器、加速度計、陀螺儀及磁力計。身體感測網路是透過控制器區域網路(CAN-bus)進行人體各部位上各個微慣性感測電路模組之微慣性感測訊號整合,並可用以量測人體各部位在三維空間中運動所產生之加速度、角速度及磁場感測值。此即時人體動作重建系統藉由配戴在軀幹上的主感測器以射頻無線傳輸的方式將微慣性感測訊號傳送至電腦端,進行人體姿態估測。為了降低微慣性感測器訊號的雜訊及飄移在姿態估測上所造成的姿態誤差,我們發展了一基於四元數的非線性互補式濾波器來融合微慣性感測訊號。接著,我們利用一球旋轉座標系統來描述三維空間關節的旋轉並有效地改善肩關節活動度的量測精準度。最後,經由實驗結果已成功地驗證:1)本系統是一具有高信效度且不必依靠任何額外的參考資訊的人體動作重建工具;2)本系統之非線性互補式濾波器可有效地降低姿態估測誤差並且精準地重建人體動作軌跡;及3)本系統之球旋轉座標系統可精準地量測肩關節活動度。
This thesis presents a wearable inertial-sensor-based body sensor network (BSN) for real-time human motion reconstruction. The network consists of several inertial sensor modules, and each of them is composed of an ARM-based 32-bit microcontroller (MCU), a triaxial accelerometer, a triaxial gyroscope, and a triaxial magnetometer. The inertial sesnors modules are placed on the different positions of the human body. Real-time communications among the sensor modules are established via a controller area network (CAN) bus to capture human motions. The inertial signals generated by human movements are transmitted to a computer via a RF wireless transmission module on the host module placed on the human trunk. In order to minimize the cumulative errors caused by the intrinsic noise/drift of the inertial sensors, we utilize a sensor fusion algorithm based on a quaternion-based nonlinear complementary filter. Subsequently, we combine the sensor fusion algorithm with a spherical rotation coordinate system to describe 3D joint rotations for improving the accuracy of shoulder range of motion measurement (ROM). Finally, the experimental results successfully validate that 1) the proposed system is an inexpensive and effective tool that can be used anywhere without any external reference device, 2) its sensor fusion algorithm can reduce orientation error effectively and thus can reconstruct the body movement trajectories accurately, and 3) the sensor fusion algorithm with the spherical rotation coordinate system can measure shoulder range of motions accurately.
[1] H. Zhou and H. Hu, “Human motion tracking for rehabilitation-A survey,” Biomed. Signal Process. Control, vol. 3, no. 1, pp. 1-18, 2008.
[2] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and J. Popović, “Practical motion capture in everyday surroundings,” ACM Trans. Graph., vol. 26, no. 3, pp. 35:1-35:9, 2007.
[3] I. Oikonomidis, N. Kyriazis, and A. Argyros, “Efficient model-based 3D tracking of hand articulations using kinect,” in Proc. Brit. Mach. Vis. Conf. 2011.
[4] Xsens, Available: http://www.xsens.com
[5] Animazoo, Available: http://www.animazoo.com
[6] Y. Luo, C. C. Tsang, G. Zhang, Z. Dong, G. Shi, S. Y. Kwok, W. J. Li, P. H. W. Leong, and M. Y. Wong, “An attitude compensation technique for a MEMS motion sensor based digital writing instrument,” in Proc. IEEE Int’l Conf. Nano/Micro Engineering and Molecular Systems, 2006, pp. 909-914.
[7] A. Olivares, J. M. Gorriz, J. Ramirez, and G. Olivares, “Accurate human limb angle measurement: Sensor fusion through Kalman, least mean squares and recursive least-squares adaptive filtering,” Measurement Science & Technology, vol. 20, no. 2, pp. 1-15, 2011.
[8] H. Fourati, N. Manamanni, L. Afilal, and H. Handrich, “A nonlinear filtering approach for the attitude and dynamic body acceleration estimation based on inertial and magnetic sensors: Bio-logging application,” IEEE Sensor Journal, vol. 11 no. 1, pp. 233-243, 2011.
[9] K. Hayes, J. R. Walton, Z. L. Szomor, and G. A. Murrel, “Reliability of five for assessing shoulder range of motion,” Australian Journal of Physiotherapy, vol. 47, no. 4, pp. 289-294, 2001.
[10] P. Piriyaprasarth, M. E. Morris, A. Winter, and A. E. Bialocerkowski, “The reliability of knee joint position testing using electrogoniometry,” BMC Musculoskeletal Disorders, vol. 9, no. 6, pp. 1-10, 2008.
[11] microFET6 data sheet, Hoggan Health Industries.
[12] G. Cooper, I. Sheret, L. McMillian, K. Siliverdis, N. Sha, D. Hodgins, L. kenney, and D. Howard, “Inertial sensor-based knee flexion/extension angle estimation,” Journal of Biomechanics, vol. 42, no. 16, pp. 2678-2685, 2009.
[13] B. Coley, B. M. Jolles, A. Farron, A. Bourgeois, F. Nussbaumer, C. Pichonnaz, and K. Aminian, “Outcome evaluation in shoulder surgery using 3D kinematics sensors,” Gait & Posture, vol. 25, no. 4, pp. 523-532, 2007.
[14] H. Huang, W. Chen, W. Cheng, Y. Lai, and J. Lin, “RT3 accelerometer shoulder activity: Discrimination of activity levels by the RT3 accelerometer for the assessment of shoulder physical activity (SPA),” Manual Therapy, vol. 16, no. 2, pp. 172-176, 2011.
[15] B. M. Jolles, C. Duc, B. Coley, K. Aminian, C. Pichonnaz, J. Bassin, and A. Farron, “Objective evaluation of shoulder function using body-fixed sensors: A new way to detect early treatment failures?,” J. Shoulder Elbow Surg., vol. 20, no.7, pp. 1074-1081, 2011.
[16] G. R. Johnson and J. M. Anderson, “Measurement of three-dimensional shoulder movement by an electromagnetic sensor,” Clinical Biomechanics, vol. 5, no. 3, pp. 131-136, 1990.
[17] P. L. Cheng, “A spherical rotation coordinate system for the description of three-dimensional joint rotations,” Annals of Biomedical Engineering, vol. 28, no. 11, pp. 1381-1392, 2000.
[18] C. A. M. Doorenbosch, J. Harlaar, and D. Veeger, “The globe system: An unambiguous description of shoulder positions in daily life movement,” Journal of Rehabilitation Research and Development, vol. 40, no. 2, pp. 147-156, 2003.
[19] STM32 data sheet, ST Microelectronics.
[20] LSM303DLH data sheet, ST Microelectronics.
[21] L3G4200D data sheet, ST Microelectronics.
[22] nRF24L01 data sheet, Nordic Semiconductor.
[23] L9616 data sheet, ST Microelectronics.
[24] M. J. Caruso, “Application of magnetoresistive sensors in navigation systems,” Sens. Actuators, 1997.
[25] 鄭秉恩,混和慣性與光學感測技術之互動式手寫筆系統之研製,國立成功大學電機工程研究所碩士論文,2012.
[26] Y.-L. Hsu, L.-C. Kuo, P.-E. Cheng, C.-W. Chang, J.-C. Chiang, and J.-S. Wang, “MEMS inertial-sensor-based pedestrian navigation system,” CCL Technical Journal, vol. 143, pp. 27-34, 2012.
[27] 謝豐任,人體動作捕捉系統之虛擬實境應用,國立成功大學電機工程研究所碩士論文,2011.
[28] Bullet 2.78 Physics SDK Manual.
[29] H. K. Unthoff, “Shoulder injury and disability,” Workplace Safety and Insurance Appeals Tribunal, 2010.
[30] C. C. Norkin and D. J. White, Measurement of Joint Motion: A Guide to Goniometry. Philadelphia, F A Davis Co, 2003.
校內:2022-12-31公開