| 研究生: |
劉彥田 Liu, Yan-Tian |
|---|---|
| 論文名稱: |
非接觸式射頻電能傳輸技術於植入式神經電刺激器之研究 Study on Contactless RF Power Transfer Technique for Implanted Neurostimulator |
| 指導教授: |
李嘉猷
Lee, Jia-You |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 50 |
| 中文關鍵詞: | 非接觸式 、植入式神經電刺激器 、延緩式仿單極性 |
| 外文關鍵詞: | contactless, implanted neurostimulator, delayed pseudomonophasic |
| 相關次數: | 點閱:108 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在研究非接觸式電能傳輸技術,建構於植入式神經電刺激器。文中首先探討不同幾何形狀感應線圈,並選用圓形線圈作為感應耦合結構,且藉由提高電能傳輸頻率至射頻頻段,以縮小感應線圈體積。次級側部分則利用諧振電路改善阻抗特性,提升電能傳輸能力。電刺激策略則採取電流刺激模式,並使用延緩式仿單極性刺激波形,來增進刺激效果及避免傷害神經細胞。最後經由實測驗證,此系統可傳輸穩定電能給予植入式功能性神經電刺激器,並於間距10mm下最高電能傳輸效率近34.5%。
This thesis is to study the contactless power transfer technique for implanted neurostimulator. The different coupling structures are analyzed, then choose spiral coil as inductive coils. The size of coils can be reduced by increasing power transfer frequency to radio frequency. The design of resonant circuit can improve the impedance characteristic and system performance on secondary. The strategy of stimulation is current-regulated mode with delayed pseudomonophasic(DPS) waveform, which provide better effect of stimulation without causing tissue damage. According to the experiment result, the highest power transfer efficiency is approximately 34.5% under 10mm gap. The prototype of contactless power transfer system for implanted neurostimulator is confirmed to be feasible.
[1] D. J. Weber, R. B. Stein, K. M. Chan, G. E. Loeb, F. J. R. Richmond, R. Rolf, K. James, S. L. Chong, A. K. Tompson, and J. Misaszek, “Functional electrical stimulation using microstumulators to correct foot drop: a case study,” Can. J. Physiol. Pharmacol., vol. 82, pp. 784-792, 2004.
[2] X. Liu and S. Y. R. Hui, “Equivalent circuit modeling of a multilayer planar winding array structure for use in a universal contactless battery charging platform,” IEEE Trans. Power Electron., vol. 22, no. 1, pp. 21-29, 2007.
[3] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Chio, “Design and implementation of low profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Trans. Ind. Electron., vol. 51, no. 1, pp. 140-147, 2004.
[4] S. C. Tang, S. Y. Hui, and H. S. H. Hung, “Coreless printed circuit board (PCB) transformers with multiple secondary winding for complementary gate drive circuits,” IEEE Trans. Power Electron., vol.14, no. 3, pp. 431-437, 1999.
[5] R. Radys, J. Hall, J. Hayes, and G. Skutt, “Optimizing AC and DC winding losses in ultra-compact, high frequency, high power transformers,” in Proc. IEEE APEC’99, 1999, pp. 14-18.
[6] P. Sergeant and A. Bossche, “Inductive coupler for contactless power transmission,” IEEE Trans. Ind. Appl., vol. 2, no. 1, pp. 1-7, 2008.
[7] A. Kawamura, G. Kuroda, and C. Zhu, “Experimental result on contact-less power transmission system for the high-speed trains,” in Proc. IEEE PESC’07, 2007, pp. 2779-2784.
[8] S. Raabe, G. A. J. Elliott, G. A. Covic, and J. T. Boys, “A quadrature pickup for inductive power transfer systems,” in Proc. IEEE ICIEA’07, 2007, pp. 68-73.
[9] F. Sato, T. Komoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966, 2004.
[10] O. Macherey, A. V. Wieringen, R. P. Carlyon, J. M. Deeks, and J. Wouters, “Asymmetric pulses in cochlear implants: effect of pulse shape, polarity, and rate,” JARO, vol. 7, pp. 253-266, 2006.
[11] H. Ali, T. J. Ahmad, A. Ajaz, and S. A. Khan, “Laboratory prototype of cochlear implant: design and techniques.” in Proc. IEEE EMBC’09, 2009, pp. 803-806.
[12] Z. Wang, S. Mai, and C. Zhang, “Power issues on circuit design for cochlear implants,” in Proc. IEEE DELTA’08, 2008, pp. 163-166.
[13] M. Ghorbel, A. Ben Hamida, and J. Tomas, “CMOS RF powering system for cochlear implant,” in Proc. IEEE SCS’09, 2009, pp. 1-4.
[14] S. Shabou, N. Rekik, M. Ghorbel, A. Ben Hamida, and M. Samet, “The RF circuit design for magnetic power transmission dedicated to cochlear prosthesis,” in Proc. IEEE ICECS’05, 2005, pp. 1-4.
[15] C. Fernandez, O. Garcia, J. A. Cobos, and J. Uceda, “A simple dc-dc converter for the power supply of a cochlear implant,” in Proc. IEEE PESC’03, 2003. pp. 1965-1970.
[16] S. Mai, C. Zhang, and Z. Wang, “An application-specific low power speech processor for cochlear implants,” in Proc. IEEE BIOCAS’09, 2009, vol. 26, pp. 177-180.
[17] D. B. Shire, S. K. Kelly, J. Chen, P. Doyle, M. D. Gingerich, S. F. Cogan, W. A. Drohan, O. Mendoza, L. Theogarajan, J. L. Wyatt, and J. F. Rizzo, “Development and implantation of a minimally invasive wireless subretinal neurostimulator,” IEEE Trans. Magn., vol. 56, no. 10, pp. 2502-2511. 2009.
[18] G. Wang, W. Liu; M. Sivaprakasam, M. Zhou, J. D. Weiland, and M. S. Humayun, “A dual band wireless power and data telemetry for retinal prosthesis.” in Proc. IEEE EMBS’06, 2006, pp. 4392-4395.
[19] Z. Yang, W. Liu, and E. Basham, “Inductor modeling in wireless links for implantable electronics,” IEEE Trans. Magn., vol. 43, no. 10, pp. 3851-3860. 2007.
[20] S. K. Kelly, D. B. Shire, P. Doyle, M. D. Gingerich, W. A. Drohan, J. F. Rizzo, L. S.Theogarajan, J. Chen, S. F. Cogan, and J. L. Wyatt, “The boston retinal prosthesis: a 15-channel hermetic wireless neural stimulator,” in Proc. ISABEL’09, 2009, pp. 1-6.
[21] G. B. Oung and B. H. Cho, “An energy transmission system for an artificial heart using leakage inductance compensation of transcutaneous transformer,” in Proc. IEEE PESC’96. 1996, pp. 898-904.
[22] M. Watada, K. Iwawaki, T. Tamada, K. Ouchi, S. Takatani, and Y. S. Um, “The development of core-type transcutaneous energy transmission system for artificial heart,” in Proc. IEEE EMBS’05, 2005, pp. 3849-3852.
[23] W. J. Weiss, “Artficial heart power supply system,” U.S Patent 6,579,315, 2003.
[24] T. H. Nishimura, K. Hirachi, Y. Maejima, K. Kuwana, and M. Saito, “Characteristics of a novel energy transmission for a rechargeable cardiac pacemaker by using a resonant DC-DC converter,” in Proc. IEEE IECON’93, 1993, pp. 875-880.
[25] S. Shabou, N. Rekik, M. Ghorbel, A. B. Hamida, and M. Samet, “Conception of an emitter for transcutaneous power and high-speed data transmission,” in Proc. IEEE ICM’04, 2004, pp.655-659.
[26] F. Sato, T. Nomoto, G. Kano, H. Matsuki, and T. Sato, “A new contactless power-signal transmission device for implanted functional electrical stimulation (FES),” IEEE Trans. Magn., vol. 40, no. 4, pp. 2964-2966. 2004
[27] G. Simard, M. Sawan, and D. Massicotte, “Novel coils topology intended for biomedical implants with multiple carrier inductive link,” in Proc. IEEE ISCAS’09, 2009, pp. 537-540.
[28] S. H. Cho, L. Cauller, W. Rosellini, and J. B. Lee, “A MEMS-based fully-integrated wireless neurostimulator,” in Proc. MEMS’10, 2010, pp. 300-303.
[29] M. Yamaguchi, B. Seok, H. K. Ki, K. Tan, T. Kusumi, and K. Yamakawa, “Ferromagnetic RF integrated inductor with closed magnetic circuit structure ,” in Proc. IEEE MSD’05, 2005, pp. 351-354.
[30] A. Ghahary and B. H. Cho, “Design of a transcutaneous energy transmission system using a series resonant converter,” in Proc. IEEE PESC’90, 1990, pp. 1-8.
[31] G. B. Hmida, M. Dhieb, H. Ghariani, and M. Samet, “Transcutaneous power and high data rate transmission for biomedical implants,” in Proc. IEEE DTIS’06, 2006. pp. 374-378.
[32] K. Jung, Y. H. Kim, E. J. Choi, H. J. Kim, and Y. J. Kim, “Wireless power transmission for implantable devices using inductive component of closed-magnetic circuit structure,” in Proc. IEEE MFI’08, 2008, pp. 272-277.
[33] R. R. Harrison, “Designing efficient inductive power links for implantable devices,” in Proc. IEEE ISCAS’07, 2007, pp. 2080-2083.
[34] N. A. Samad, V. Tharshan, M. A. Syed, and C. E. Brander, “Design of a wireless power supply receiver for biomedical applications,” in Proc. IEEE APCCAS’06, 2006, pp. 674-677.
[35] W. Li, Z. Zhang, and Z. G. Wang “Function electrical stimulation signals generator circuits for the central nerve and the sciatic nerve,” in Proc. IEEE IEMBS’05, 2005, pp. 5287-5290.
[36] C. W. Lin, H. W. Chiu, M. L. Lin, C. H. Chang, I. H. Ho, P. H. Fang, Y. C. Li, C. L. Wang, Y. C. Tsai, Y. R. Wen, W. P. Shih, Y. J. Yang, and S. S. Lu, “Pain control on demand based on pulsed radio-frequency stimulation of the dorsal root ganglion using a batteryless implantable CMOS SoC,” in Proc. IEEE ISSCC’10, 2010, pp. 234-235.
[37] N. O. Sokal and A. D. Sokal, “Class E - a new class of high efficiency tuned single-ended switching power amplifiers,” IEEE J. Solid-State Circuits, vol. 10, pp. 168-176, 1975.
[38] ICNIRP, “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz),” Health Physics, vol. 74, 1998.
[39] D. N. Rushton, “Functinal electrical stimulation,” Physiol. Meas., vol. 18, no. 4, pp. 241-275, 1997.
[40] 賴弘偉,分區激發感應結構於非接觸式多負載充電平臺之研究,國立成功大學電機工程學系碩士論文,2009年。
[41] 莊倍源,可攜式多媒體電子產品用非接觸型感應供電墊之研製,國立成功大學電機工程學系碩士論文,2009年。
[42] 陳建任,具多鐵芯感應結構非接觸式油電混合車充電槳之研究,國立成功大學電機工程學系碩士論文,2009年。
[43] 陳勝建,非接觸式編織型饋電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[44] 張宇誠,具封閉型耦合結構非接觸式感應供電軌道之研究,國立成功大學電機工程學系碩士論文,2009年。
[45] 陳忠鍇,設計無線資料與能量傳輸之神經環型電刺激系統,國立成功大學醫學工程研究所碩士論文,2002年。