| 研究生: |
張蕙如 Chang, Hui-Ju |
|---|---|
| 論文名稱: |
使用超取樣增益調變技術達到寬廣生醫感測範圍之伏安式恆電位儀晶片設計 Design of Integrated Potentiostat with Oversampling Gain Modulation for Wide-Range Electrochemical Sensing |
| 指導教授: |
林志隆
Lin, Chih-Lung 劉濱達 Liu, Bin-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 增值型三角積分調變器 、增益調變技術 、伏安式恆電位儀 、電化學感測 、超取樣技術 |
| 外文關鍵詞: | incremental sigma-delta modulator, Electrochemical sensing, oversampling technique, gain modulation technique, potentiostat |
| 相關次數: | 點閱:130 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文實現一應用於生醫濃度感測之伏安式恆電位儀電路。其電路原理為設法固定兩測試電極的電位差,利用不同待測溶液濃度造成不同的等效電阻之特性,以產生一隨溶液濃度變化的電流。藉由一電流模式之增值型三角積分調變器感測此類比電流並將其轉成1 bit之數位訊號,之後透過一個16-bit計數器將此1 bit之數位訊號轉換成16-bit之數位訊號,根據數位碼的大小推估溶液濃度。由於此調變器電路直接對電流進行訊號處理,因此,可避免電流轉電壓等訊號轉換所造成的失真。為了達到寬廣的電流量測範圍,採用增益調變技術,改變調變器內數位至類比轉換器之操作頻率。此外,利用超取樣方式,達到更高之準確度。
本論文使用0.35 um二層多晶矽金屬之互補式金氧半製程,實現供應電壓為5 V之伏安式恆電位儀,其感測電流範圍可達10 pA~10 uA,準確度可達10 bits,不含後級計數電路,整體電路消耗為4.22 mW。
In this thesis, a potentiostat circuit for sensing bio-solution concentration is proposed. The operation principle of this circuit is to fix the voltage difference between two measuring electrodes. The equivalent resistance of the solution under measurement is strongly related with the solution concentration. Therefore, a solution concentration dependent current would be produced. A current mode incremental sigma-delta modulator is used to sense and transform this analogous current into one bit digital stream. This bit stream is transformed as 16-bit digital codes by a 16-bit counter. Finally, we could calculate solution concentration from the relationship of the digital code and solution concentration dependent current. Since the modulator directly processes the current signal, it could avoid the distortion due to additional transconductance amplifier. Moreover, in order to obtain a wide range of sensing current, we adopt gain modulation technique to adjust the integrated time of the integrator and the turn-on time of the feedback current digital-to-analog converter (DAC). Furthermore, a oversampling technique is also employed to improve the circuit accuracy.
This work is implemented in a TSMC 0.35 um 2P4M CMOS process from 5 V supply voltage. The range of sensing current is from 10 pA to 10 uA, and the resolution is up to 10 bits. The total power consumption is 4.22 mW, excluding the back-end digital counter.
[1] R. F. B. Turner, D. J. Harrison, and H. P. Baltes, “A CMOS potentiostat for amperometric chemical sensors,” IEEE J. Solid-State Circuits, vol. 22, pp. 473-478, June 1987.
[2] J. C. Fidler, W. R. Penrose, and J. P. Bobis, “A potentiostat based on a voltage-controlled current source for use with amperometric gas sensors,” IEEE Trans Instrum. Meas., vol. 41, pp. 308-310, Apr. 1992.
[3] R. J. Reay, S. P. Kounaves, and G. T. A. Kovacs, “An integrated CMOS potentiostat for miniaturized electroanalytical instrumentation,” in Proc. ISSCC Dig, Tech. Papers, Feb. 1994, pp. 162-163.
[4] R. G. Kakerow, H. Kappert, E. Spiegel, and Y. Manoli, “Low-power single-chip CMOS potentiostat,” in Proc. IEEE Int. Conf. on Solid-State Sensors and Actuators, June 1995, pp. 142-145.
[5] A. Frey, M. Jenkner, M. Schienle, C. Paulus, B. Holzapfl, P. Schindler-Bauer, F. Hofmann, D. Kuhlmeier, J. Krause, J. Albers, W. Gumbrecht, D. Schmitt-Landsiedel, and R. Thewes, “Design of an integrated potentiostat circuit for CMOS bio sensor chips,” in Proc. IEEE ISCAS, May 2003, pp. 9-12.
[6] M. Breten, T. Lehmann, and E. Braun, “Integrating data converters for picoampere currents from electrochemical transducers,” in Proc. IEEE ISCAS, May 2000, pp. 709-712.
[7] A. Bandyopadhyay, G. Mulliken, G. Cauwenberghs, and N. Thakor, “VLSI potentiostat array for distributed electrochemical neural recording,” in Proc. IEEE ISCAS, May 2002, pp. 740-743.
[8] S. M. Martin, F. H. Gebara, T. D. Strong, and R. B. Brown, “A low-voltage, chemical sensor interface for systems-on-chip: the fully-differential potentiostat,” in Proc. IEEE ISCAS, May 2004, pp. 892-895.
[9] H. S. Narula and J. G. Harris, “VLSI potentiostat for amperometric measurements for electrolytic reactions,” in Proc. IEEE ISCAS, May 2004, pp. 457-460.
[10] A. Gore, S. Chakrabartty, S. Pal, and E. C. Alocilja, “A multichannel femtoampere-sensitivity potentiostat array for biosensing applications,” IEEE Trans. Circuits Syst. I, vol. 53, pp. 2357-2363, Nov. 2006.
[11] A. Hassibi, and T. H. Lee, “A programmable electrochemical biosensor array in 0.18m standard CMOS,” in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2005, pp. 564-565 & 617.
[12] W. Y. Liao, Y. G. Lee, C. Y. Huang, H. Y. Lin, Y. C. Weng, and T. C. Chou, “Telemetric electrochemical sensor,” Biosensors and Bioelectronics, Oct. 2004, pp. 482-490.
[13] M. Stanacevic, K. Murari, G. Cauwenberghs, and N. Thakor, “16-channel wide-range VLSI potentiostat array,” in Proc. IEEE BioCAS, Dec. 2004, pp. SI/7/INV/17- SI/7/INV/20.
[14] K. Murari, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “Wide-range, picoampere-sensitivity multichannel VLSI potentiostat for neurotransmitter sensing,” in Proc. IEMBS, Dec. 2004, pp. 4063-4066.
[15] K. Murari, M. Stanacevic, G. Cauwenberghs, and N. Thakor, “VLSI potentiostat array with oversampling gain modulation for wide-range neurotransmitter sensing,” IEEE Trans. Biomed. Circuit Syst., vol. 1, pp. 63-72, Mar. 2007.
[16] M. M. Ahmadi and G. A. Jullien, “Current-mirror based potentiostats for three-electrode amperometric electrochemical sensors,” IEEE Trans. Circuits Syst. I, vol. 56, pp. 1339-1348, July 2009.
[17] R. J. van de Plassche, “A sigma-delta modulator as an A/D converter,” IEEE Trans. Circuit Syst. I, vol. 25, pp. 510-514, July 1978.
[18] J. Robert, G. C. Temes, V. Valencic, R. Dessoulavy, and P. Deval, “A 16-bit low-voltage CMOS A/D converter, ” IEEE J. Solid-State Circuits, vol. 22, pp. 157-163, Apr. 1987.
[19] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. New York: Wiely, 2007.
[20] J. Markus , J. Silva, and G.. C. Temes, “Theory and application of incremental ΔΣ converters,” IEEE Trans. Circuits Syst. I, vol. 51, pp. 678-690, Apr. 2004.
[21] T. C. Caldwell and D. A. Johns, “An incremental data converter with an oversampling ratio of 3,” in Proc. IEEE PRIME, 2006, pp. 125-128.
[22] D. A. Johns and K. Martin, Analog Integrated Circuit Design. New York: Wiely, 1997.
[23] P. M. Figueiredo and J. C. Vital, “Kickback noise reduction techniques for CMOS latched comparators,” IEEE Trans. Circuits Syst. I, vol. 53, July 2006.
[24] R. Hogervorst, J. P. Tero, R. G. H. Eschauzier, and J. H. Huijsing, “A compact power-efficient 3V CMOS rail-to-rail input/output operational amplifier for VLSI cell libraries, ” IEEE J. Solid-State Circuits, vol. 29, pp. 1505-1513, Dec. 1994.
[25] S. Nicolson, Phang Khoman, “Improvements in biasing and compensation of CMOS opamps, ” in Proc. IEEE ISCAS, May 2004, pp. 23-26.