簡易檢索 / 詳目顯示

研究生: 林長弘
Lin, Chang-Hung
論文名稱: 利用溶膠凝膠法製備摻雜氧化錫薄膜與氫氣感測特性之研究
Growth and Characterization of Pure and Doped SnO2 Films for H2 Gas Detection
指導教授: 齊孝定
Qi, Xiao-Ding
共同指導教授: 李世欽
Lee, Shih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 100
中文關鍵詞: 溶膠凝膠法二氧化錫氣體感測氫氣
外文關鍵詞: sol-gel, tin oxide, gas sensor, H2
相關次數: 點閱:81下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗利用溶膠凝膠法(sol-gel)製備SnO2以及SnO2:M, M=Pd, Mn, W, Y。摻雜後,對此些混合金屬氧化物材料的表徵和化學成分進行了廣泛的特性分析,摻雜後晶粒變為比未摻雜之二氧化錫小,同樣的SEM觀察到的叢集物也相對變小,相對比表面積增加,有利於氣體感測應用。
    實驗結果針對不同摻雜與純氧化錫薄膜對於氣體偵測500 ppm氫氣做比較,純氧化錫有最高靈敏度時的最佳溫度是250 ℃,氣體敏感因子S=3.9,回復時間t=84 sec,相對的以250 ℃為操作溫度,摻雜5 at%W的薄膜對500 ppm氫氣擁有最高的靈敏度S=25.8,其回復時間亦有所減短(t=72 sec)。摻雜5 at%Pd的薄膜具備最短的回復時間(t=60sec),但靈敏度僅少許改善S=4.4,而錳摻雜之氧化錫不但氣體靈敏性低,並且熱穩定性也不佳。實驗最後發現摻雜5 at%W及5 at%Y氧化錫薄膜在50~500 ppm氫氣間的靈敏度對氫氣濃度有良好的正比線性關係,可用於定量測量。在50 ppm氫氣情形下,5 at%W-SnO2薄膜仍有高達S=3.35的靈敏度。

    Pure and doped SnO2:M (M=Pd, Mn, W,Y) films were prepared by the sol-gel method. The surface morphology and microstructure of the grown films were characterized by a wide range of techniques. Generally, various doping resulted in a reduction of the grain size, as well as a smaller size of various surface features.
    The films were tested for the gas sensing applications. In the 500 ppm H2 gas, the optimum operating temperature for the pure SnO2 films was 250 oC, which showed a sensitivity of S=3.9 and a recovery time of 84 s. Doping of 5 at% W increased the sensitivity significantly (S=25.8) at the same operating temperature, while the recovery time was reduced to 72 s. For the 5 at% Pd doped SnO2 films, the sensitivity was only slightly improved (S=4.4), however they showed the quickest recovery time of 60 s. Doping of Mn did not improve the H2 sensing sensitivity and the doped films showed a poor thermal stability at the elevated temperatures. The sensitivity of 5 at% W and 5 at%Y doped SnO2 in 50-500 ppm H2 showed a linear increase with the gas concentration and therefore, they can be used for the quantitative sensing. In the 50 ppm H2 gas, 5 at% W doped SnO2 films still showed a fairly good sensitivity of S=3.35.

    摘要 I Abstract II 誌謝 IV 總目錄 VI 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1研究背景 1 1-2研究動機與目的 3 第二章 文獻回顧 6 2-1二氧化錫結構與特性 6 2-2溶膠凝膠法基礎理論 8 2-3旋轉塗佈法的原理 11 2-4二氧化錫之氣體偵測性及其應用 13 2-5氣體偵測器工作原理 14 2-5-1氣體之吸附機制 14 2-5-2二氧化錫對氣體偵測原理 16 2-6 催化劑在金屬氧化物中的作用 19 2-7 儀器原理 21 2-7- 1掃瞄式電子顯微鏡原理 21 2-7-2 X光能量散佈分析儀原理 22 2-7-3低掠角X光繞射儀原理 23 2-7-4歐傑電子能譜儀原理 25 第三章 實驗方法及步驟 37 3-1實驗流程 37 3-2實驗藥品及儀器 38 3-3基材前處理與薄膜的製備 40 3-3-1基材前處理 40 3-3-2溶膠凝膠的配製 40 3-3-3旋轉塗佈法 41 3-3-4退火熱處理 42 3-4薄膜性質量測 43 3-4-1表面形貌及成分分析 43 3-4-2晶體結構分析 43 3-5氣體偵測性質分析 45 3-5-1 氣體偵測系統 45 3-5-2 氣體偵測試片製備 45 3-5-3 氣體偵測能力分析流程 45 第四章 結果與討論 50 4-1 SnO2試片表面分析 50 4-1-1 SnO2薄膜SEM斷面分析 50 4-1-2表面形貌分析 50 4-1-3 EDS表面成分分析 52 4-1-4 AES表面成分分析 52 4-1-5 X-ray繞射分析 53 4-2薄膜氣體感測性質分析 56 4-2-1二氧化錫薄膜在不同溫度之氫氣靈敏度 56 4-2-2摻雜對二氧化錫薄膜氫氣靈敏度及回復時間之影響 57 4-2-3摻雜後薄膜對低濃度氫氣之靈敏度 59 第五章 結論 92 參考文獻 93

    [1] Y.-H. Choi, S.-H. Hong, "H2 sensing properties in highly oriented SnO2 thin films", Sensors and Actuators B: Chemical, 125 (2007) 504-509.
    [2] V. N. Mishra, R. P. Agarwal, "Sensitivity, response and recovery time of SnO2 based thick-film sensor array for H2, CO, CH4 and LPG", Microelectronics Journal, 29 (1998) 861-874.
    [3] T. Yamazaki, H. Okumura, C.-J. Jin, A. Nakayama, T. Kikuta, N. Nakatani, "Effect of density and thickness on H2-gas sensing property of sputtered SnO2 films", Vacuum, 77 (2005) 237-243.
    [4] S. Mosadegh Sedghi, Y. Mortazavi, A. Khodadadi, "Low temperature CO and CH4 dual selective gas sensor using SnO2 quantum dots prepared by sonochemical method", Sensors and Actuators B: Chemical, 145 (2010) 7-12.
    [5] S. Wang, Y. Zhao, J. Huang, Y. Wang, H. Ren, S. Wu, S. Zhang, W. Huang, "Low-temperature CO gas sensors based on Au/SnO2 thick film", Applied Surface Science, 253 (2007) 3057-3061.
    [6] V. Lazarova, L. Spassov, V. Gueorguiev, S. Andreev, E. Manolov, L. Popova, "Quartz resonator with SnO2 thin film as acoustic gas sensor for NH3", Vacuum, 47 (1996) 1423-1425.
    [7] N. Van Hieu, L. T. B. Thuy, N. D. Chien, "Highly sensitive thin film NH3 gas sensor operating at room temperature based on SnO2/MWCNTs composite", Sensors and Actuators B: Chemical, 129 (2008) 888-895.
    [8] J. Kaur, S. C. Roy, M. C. Bhatnagar, "Highly sensitive SnO2 thin film NO2 gas sensor operating at low temperature", Sensors and Actuators B: Chemical, 123 (2007) 1090-1095.
    [9] J. K. Srivastava, P. Pandey, V. N. Mishra, R. Dwivedi, "Sensing mechanism of Pd-doped SnO2 sensor for LPG detection", Solid State Sciences, 11 (2009) 1602-1605.
    [10] 李孟軒, 摻雜金銀之二氧化錫薄膜對一氧化碳偵測性質之研究, in: 國立清華大學化學工程所, 民國九十六年六月.
    [11] 陳溪山, 二氧化錫薄膜之製備、微結構及功能性之研究, in: 國立中山大學材料科學研究所, 民國九十二年六月.
    [12] 范成至, 以二氧化錫為氣體感測材料之特性探討, in: 國立交通大學光電工程研究所碩士論文, 1994.
    [13] S. M. Sze: Semiconductor Sensors, John Wiley and Sons, 1994.
    [14] P. B. Weisz, "Effects of electronic charge transfer between adsorbate and solid on chemsiorption and catalysis", Journal of Chemical Physics, 21 (1953) 1531-1538.
    [15] T. Seiyama, "A new detector for gaseous components using semiconductive thin films", Analytical Chemistry, 34 (1962) 1502-1503.
    [16] K. Ihokura: The Stannic Oxide Gas Sensor-Principles and Applications, CRC press, TOKYO, 1994.
    [17] G. M. M.D. Giulio, A.Serra, A. Tepore, R. Rella, P. Siciliano, "SnO2 thin films for gas sensor prepared by r.f. reactive sputtering", Sensors and Actuators B: Chemical, 106 (1995) 465-468.
    [18] S. K. G.J. L i, "High-surface-area SnO2: A novel semiconductor oxide gas sensor", Materials Letters, 34 (1998) 99-102.
    [19] Y. K. K. C. Song, "Preparation of high surface area tin oxide powders by a homogeneous precipitation method", Materials Letters, 42 (2000) 283-289.
    [20] J. J. C. H.P.Kim, H.W. Cheong, J.M. Kim, J.M. Kim, "Sensing mechanism of SnO2-based sensors for alcohols", Sensors and Actuators B, 13-14 (1993) 511-512.
    [21] U. L. H. Meixner, "Metal oxide sensors", Sensors and Actuators B, 33 (1996) 198-202.
    [22] G. Sberveglieri, "Recent developments in semiconducting thin-film gas sensors", Sensors and Actuators B: Chemical, 23 (1995) 103-109.
    [23] Z. G. L. W. S. Hu., Z. C. Wu., D. Feng, "Comparative study of laser ablation techniques for fabricating nanocrystalline SnO2 thin films for sensors", Materials Letters, 28 (1996) 369-372.
    [24] K. L. Chopra, S. Major, D. K. Pandya, "Transparent conductors--A status review", Thin Solid Films, 102 (1983) 1-46.
    [25] S. C. Ray, M. K. Karanjai, D. Dasgupta, "Preparation and study of doped and undoped tin dioxide films by the open air chemical vapour deposition technique", Thin Solid Films, 307 (1997) 221-227.
    [26] L. Sangaletti, L. E. Depero, A. Dieguez, G. Marca, J. R. Morante, A. Romano-Rodriguez, G. Sberveglieri, "Microstructure and morphology of tin dioxide multilayer thin film gas sensors", Sensors and Actuators B: Chemical, 44 (1997) 268-274.
    [27] F. M. Amanullah, M. Saleh Al-Mobarak, A. M. Al-Dhafiri, K. M. Al-Shibani, "Development of spray technique for the preparation of thin films and characterization of tin oxide transparent conductors", Materials Chemistry and Physics, 59 (1999) 247-253.
    [28] J. Dutta, P. Roubeau, T. Emeraud, J.-M. Laurent, A. Smith, F. Leblanc, J. Perrin, "Application of pyrosol deposition process for large-area deposition of fluorine-doped tin dioxide thin films", Thin Solid Films, 239 (1994) 150-155.
    [29] E. Aperathitis, Z. Hatzopoulos, M. Androulidaki, V. Foukaraki, A. Kondilis, C. G. Scott, D. Sands, P. Panayotatos, "RF sputtered indium-tin-oxide as antireflective coating for GaAs solar cells", Solar Energy Materials and Solar Cells, 45 (1997) 161-168.
    [30] M. Egashira, T. Matsumoto, Y. Shimizu, H. Iwanaga, "Gas-sensing characteristics of tin oxide whiskers with different morphologies", Sensors and Actuators, 14 (1988) 205-213.
    [31] T. Hiroshi: 光觸媒圖解, 商周出版, 2003.
    [32] J. Hildenbrand, Simulation and characterisation of a micromachined gas sensor and preparation for model order reduction, in: institute for microsystem technology,Albert Ludwig University, Freiburg,Germany, 2003.
    [33] " JCPDS, 41-1445", (1997).
    [34] C. W. Turner, "Sol-Gel-Principles and applications", Ceramic Bulletin, 70 (1991) 1487-1490.
    [35] 王偉洪: 溶凝膠光學材料技術, 經濟部工業局八十八年度工業技術人才培訓計畫講義.
    [36] D. R. Ulrich, "Prospects of sol-gel processes", J. Non -cryst. solids, 100 (1988) 174-193.
    [37] G. R. H. Schmidt, R. Nab, and D. Sporn, "Mat. Res. Soc. Symp. Proc., 121 (1988) 743-754.
    [38] A. A. G. a. G. H. F. W. Beier, "Thin SiO2---TiO2---ZrO2 films from alkoxide solutions", J. Non -cryst. solids, 100 (1988) 531-537.
    [39] W. B. a. G. H. F. U. Wellbrock, "Preparationnext term of SiO2 ─TiO2─ZrO2 previous termgel glasses and coatingsnext term by previous termmeans of modified alkoxide solutions", J. Non -cryst. solids, 147&148 (1992) 350-355.
    [40] R. C. Mehrotra, "Synthesis and reactions of metal alkoxides", J. Non -cryst. solids, 100 (1988) 1-15.
    [41] L. E. Scriven, "Physics and Applications of Dip Coating and Spin. Coating", Mat. Res. Soc Symp. Proc., 121 (1988) 717.
    [42] H. Ohnishi, H. Sasaki, T. Matsumoto, M. Ippommatsu, "Sensing mechanism of SnO2 thin film gas sensors", Sensors and Actuators B: Chemical, 14 (1993) 677-678.
    [43] D. Kohl, "Surface processes in the detection of reducing gases with SnO2-based devices", Sensors and Actuators, 18 (1989) 71-113.
    [44] S. R. Morrison: The Chemical Physics of Surfaces, Plenum Press, New York, 1990.
    [45] N. Yamazoe, J. Fuchigami, M. Kishikawa, T. Seiyama, "Interactions of tin oxide surface with O2, H2O AND H2", Surface Science, 86 (1979) 335-344.
    [46] M. Batzill, U. Diebold, "The surface and materials science of tin oxide", Progress in Surface Science, 79 (2005) 47-154.
    [47] P. B. Weisz, "Effects of electronic charge transfer between adsorbate and solid on chemisorption and catalysis", The Journal of Chemical Physics, 21 (1953) 1531-1538.
    [48] H. Ihokuro: Sensors and Technology., Wiley, New York, USA, 1983.
    [49] A. S. A. a. L. B. Younkman, "Sensing mechanism of a carbon monoxide sensor based on anatase titania", J. Electrochem. Soc., 144 (1997) 1750-1753.
    [50] T. M. Egashira M., Y. Shimizu, "Highly ordered SnO2 nanorod arrays from controlled aqueous growth", Sensors and Actuators B, 14 205-211.
    [51] M. N. Ogawa H., A. Abe, "Radiolytic control of the size of colloidal gold nanoparticles", J. Appl. Phys., 53 (1982) 4448-4452.
    [52] Y. T. S. Matsushima, N. Miura, N. Yamazoe, "Electronic interaction between metal additives and tin dioxide in tin dioxide-based gas sensors", Japanese Journal of Applied Physics, 27 (1988) 1798-1802.
    [53] N. Yamazoe, "New approaches for improving semiconductor gas sensors", Sensors and Actuators B: Chemical, 5 (1991) 7-19.
    [54] 汪建民等人: 材料分析, 中國材料科學學會, 1998.
    [55] D.-S. Lee, C.-H. Shim, J.-W. Lim, J.-S. Huh, D.-D. Lee, Y.-T. Kim, "A microsensor array with porous tin oxide thin films and microhotplate dangled by wires in air", Sensors and Actuators B: Chemical, 83 (2002) 250-255.
    [56] G. Zhang, M. Liu, "Effect of particle size and dopant on properties of SnO2-based gas sensors", Sensors and Actuators B: Chemical, 69 (2000) 144-152.
    [57] T. O.-E. C.Nayral, A.Maisonnat, B.Chaudret, P.Fau, L.Lescouzeres, A.Peyre-Lavigne, "A Novel Mechanism for the Synthesis of Tin / Tin Oxide Nanoparticles of Low Size Dispersion and of Nanostructured SnO2 for the Sensitive Layers of Gas Sensors", Advanced Materials, 11 (1999) 61-63.
    [58] A. Kaushal, P. Bansal, R. Vishnoi, N. Choudhary, D. Kaur, "Room-temperature ferromagnetism in Sn1-xMnxO2 nanocrystalline thin films prepared by ultrasonic spray pyrolysis", Physica B: Condensed Matter, 404 (2009) 3732-3738.
    [59] N. L. V. Carreño, A. P. Maciel, E. R. Leite, P. N. Lisboa-Filho, E. Longo, A. Valentini, L. F. D. Probst, C. O. Paiva-Santos, W. H. Schreiner, "The influence of cation segregation on the methanol decomposition on nanostructured SnO2", Sensors and Actuators B: Chemical, 86 (2002) 185-192.
    [60] K. S. Yoo, S. H. Park, J. H. Kang, "Nano-grained thin-film indium tin oxide gas sensors for H2 detection", Sensors and Actuators B: Chemical, 108 (2005) 159-164.
    [61] V. A. Chaudhary, I. S. Mulla, K. Vijayamohanan, "Selective hydrogen sensing properties of surface functionalized tin oxide", Sensors and Actuators B: Chemical, 55 (1999) 154-160.
    [62] S. Shukla, P. Zhang, H. J. Cho, S. Seal, L. Ludwig, "Room temperature hydrogen response kinetics of nano-micro-integrated doped tin oxide sensor", Sensors and Actuators B: Chemical, 120 (2007) 573-583.
    [63] M. Vrnata, V. Myslík, F. Vyslouzil, M. Jelínek, J. Lancok, J. Zemek, "The response of tin acetylacetonate and tin dioxide-based gas sensors to hydrogen and alcohol vapours", Sensors and Actuators B: Chemical, 71 (2000) 24-30.
    [64] S. Shukla, S. Seal, L. Ludwig, C. Parish, "Nanocrystalline indium oxide-doped tin oxide thin film as low temperature hydrogen sensor", Sensors and Actuators B: Chemical, 97 (2004) 256-265.
    [65] V. A. Chaudhary, I. S. Mulla, K. Vijayamohanan, "Comparative studies of doped and surface modified tin oxide towards hydrogen sensing: Synergistic effects of Pd and Ru", Sensors and Actuators B: Chemical, 50 (1998) 45-51.
    [66] S. Shukla, S. Patil, S. C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, S. Seal, "Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor", Sensors and Actuators B: Chemical, 96 (2003) 343-353.

    下載圖示 校內:2016-08-30公開
    校外:2016-08-30公開
    QR CODE