| 研究生: |
李信宏 Li, Hsin-Hung |
|---|---|
| 論文名稱: |
探討微機電的開路探針在射頻的細胞阻抗之研究 Study of Open-Ended MEMS Probes for Dielectric Spectroscopy of Biological Cells at Radio Frequency |
| 指導教授: |
張凌昇
Jang, Ling-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 微機電 、細胞阻抗 、生醫檢測 、射頻 、共平面波導 |
| 外文關鍵詞: | radio-frequency, bio-detection, coplanar waveguide, cell impedance, MEMS |
| 相關次數: | 點閱:81 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於MEMS的製程技術顯著的改進,再加上通訊裝置在市場上的需求性,加速RF的發展. MEMS的優點不僅可以大量製造,也可以微小化,相對於傳統的裝置更可以運作的更有效率.而RF量測與MEMS運用在生醫感測技術上,更是能使原本在阻抗量測方面獲得改善.例如:增進細胞定位的確切性,細胞的附著程度,電極的可靠度,量測訊號的正確性等.藉由這些改進,可將原本低頻在量測方面的不足與難題,轉換以射頻量測來克服.
本論文提出了一個可重複使用的共平面波導之開路電極來做細胞量測,藉由在射頻下的網路分析,提出對整個量測裝置的定性分析,例如製程變異,以及電極的長短.經由時域反射器的驗證,降低對基板的電容效應以提升量測的訊雜比以及網路分析儀的校準運算.從量測結果可以得知,此裝置的確有效的改善低頻量測的缺陷(電雙層電容),並能辨別濃度的不同,溶液的不同,細胞有無.從設計的結構,可以深入探討細胞膜的特性.此不僅解決了細胞量測的舊缺陷,更開啟了生醫感測的新思維.希望未來能在疾病量測等應用方面推進一步.
In the past years, since the processing techniques for MEMS (Micro-Electro-Mechanical Systems) have improved significantly, and the commercial demand for communication devices increases RF-tech development. Apart from having the advantages of mass production, and being miniaturized, MEMS lead to more efficient systems rather than conventional ones. Besides, the dielectric spectroscopy will be improved after using RF measurement and MEMS on biological sensing. For example, the precision of cellular localization, the extent of cell attachment, the reliability of electrodes, and the accuracy of measurement signal and so on. Through these improvements, the shortcomings and Gordian knots of measurement at relatively low frequency will overcome and improved using radio frequency measurement.
This study proposes a repeatable coplanar waveguide open-ended probe to perform cell measurement. Leaning on the network analysis at radio frequency, a quantitative analysis is investigated for the overall measurement device, such as fabrication deviation and stretch of probe. Verified by TDR (Time-Domain Reflectometer), capacitance effect of substrate is eliminated to improve signal-to-noise ratio on measurement and correct the calibration calculation of VNA (Vector Network Analyzer). Based on the measurement result, this device actually improves the shortcomings of measurement at low frequency, and discriminates different concentration of electrolyte, various solution, and single cell. For further investigation, cell membrane can be analyzed due to design schematic. It will promote the biological application such as disease detection in the future.
[1] R. Hober, "Eine Methode, die elektrische Leitfaihigkeit im Innern von Zellen zu messen," Pflugers Arch. Gesamte Physio, vol. 133, pp. 237-259, 1910.
[2] Y. D-S, "The dielectric properties of cancerous tissues in a nude mouse xenograft model," Bioelectromagnetics, vol. 25, pp. 492-497, 2004.
[3] G. Schmid, G. Neubauer, and P. R. Mazal, "Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz," Bioelectromagnetics, vol. 24, pp. 423-430, 2003.
[4] F. Duhamel, I. Huynen, and A. Vander Vorst, "Measurements of complex permittivity of biological and organic liquids up to 110 GHz," IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 107-110 vol.1, 1997.
[5] D. Popovic, L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. H. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, vol. 53, pp. 1713-1722, 2005.
[6] S. D. James, R. G. Johnson, and R. E. Higashi, "Broad range absolute pressure microsensor," pp. 107-108, 1988.
[7] W. H. Ko, "Sensors and actuators for prosthetic systems," pp. 3-158, 1989.
[8] H. Fujita and A. Omodaka, "Electrostatic actuators for micromechatronics," p. 10, 1987.
[9] T. Higuchi, Y. Hojjat, and M. Watanabe, "Microactuators using recoil of an ejected mass," p. 5, 1987.
[10] C. Gonzlez, S. D. Collins, and R. L. Smith, "Fluidic interconnects for modular assembly of chemical microsystems," Sensors and Actuators B: Chemical, vol. 49, pp. 40-45, 1998.
[11] M. O. Heuschkel, L. Gurin, B. Buisson, D. Bertrand, and P. Renaud, "Buried microchannels in photopolymer for delivering of solutions to neurons in a network," Sensors and Actuators B: Chemical, vol. 48, pp. 356-361, 1998.
[12] "Optical system for calibration of aerospace jigs," Precision Engineering, vol. 10, pp. 240-240, 1988.
[13] "Ultrasonic probes designed to test aerospace materials," NDT International, vol. 21, pp. 293-293, 1988.
[14] "Videomicroscopic analysis of cytoskeletal function during rat spermatogenesis : . Institute of Biomedicine, Department of Anatomy, University of Turku, SF-20520 Turku, Finland," Cell Differentiation, vol. 20, pp. 53-53, 1987.
[15] P. A. Hansson, "Institute for space biomedicine opens in Sheffield, UK," Space Policy, vol. 4, pp. 151-152, 1988.
[16] L. J. Altman, R. E. O'Brien, S. K. Gupta, and H.-R. Schulten, "A constitutional analysis of some 14C-labeled carbohydrates of high specific activity by carbon-13 n.m.r. spectroscopy and field-desorption, mass spectrometry," Carbohydrate Research, vol. 87, pp. 189-199, 1980.
[17] J. P. H. Burbach, P. Schotman, and E. R. de Kloet, "Oxytocin biotransformation in the rat limbic brain: Chemical characterization of two oxytocin fragments and proposed pathway for oxytocin conversion," Biochemical and Biophysical Research Communications, vol. 97, pp. 1005-1013, 1980.
[18] H. Fujita, "Future of actuators and microsystems," Sensors and Actuators A: Physical, vol. 56, pp. 105-111, 1996.
[19] K. Ikeda, H. Kuwayama, T. Kobayashi, T. Watanabe, T. Nishikawa, T. Yoshida, and K. Harada, "Silicon pressure sensor integrates resonant strain gauge on diaphragm," Sensors and Actuators A: Physical, vol. 21, pp. 146-150, 1990.
[20] S. Yang and J. Cao, "Two-Event Echos in Single-Molecule Kinetics: A Signature of Conformational Fluctuations," Journal of Chemical Physics, vol. 105, pp. 6536-6549, 2001.
[21] G. K. Schenter, H. P. Lu, and X. S. Xie, "Statistical Analyses and Theoretical Models of Single-Molecule Enzymatic Dynamics," Journal of Chemical Physics, vol. 103, pp. 10477-10488, 1999.
[22] N. J. Dovichi, J. C. Martin, J. H. Jett, and R. A. Keller, "Attogram Detection Limit for Aqueous Dye Samples by Laser-Induced Fluorescence," Science, vol. 219, pp. 845-847, 1983.
[23] P. M. Goodwin, R. L. Affleck, W. P. Ambrose, J. N. Demas, J. H. Jett, J. C. Martin, L. J. Reha-Krantz, D. J. Semin, J. A. Schecker, M. Wu, and R. A. Keller, "Progress toward DNA sequencing at the single molecule level," Experimental Biomolecular Physics, vol. 41, pp. 279-294, 1995.
[24] J. C. McDonald and G. M. Whitesides, "Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices," Accounts of Chemical Research vol. 35, pp. 491-499, 2002.
[25] J. R. Anderson, D. T. Chiu, R. J. Jackman, O. Cherniavskaya, J. C. McDonald, H. Wu, S. H. Whitesides, and G. M. Whitesides, "Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping," Analytical Chemistry, vol. 72, pp. 3158-3164, 2000.
[26] J. Xu, L. Wu, Z. Yang, W. Yang, M. Huang, J. Cheng, and X. Wan, "Functional biochips for cell and molecular manipulation," MicroTAS, pp. 313-314, 2001.
[27] Y. Huang, K. L. Ewalt, M. Tirado, R. Haigis, A. Forster, D. Ackley, M. J. Heller, J. P. O'Connell, and M. Krihak, "Electric Manipulation of Bioparticles and Macromolecules on Microfabricated Electrodes," Analytical Chemistry, vol. 73, pp. 1549-1559, 2001.
[28] C. Rusu, R. van't Oever, M. J. de Boer, H. V. A. J. H. V. Jansen, J. W. A. B. J. W. Berenschot, M. L. A. B. M. L. Bennink, J. S. A. K. J. S. Kanger, B. G. A. d. G. B. G. de Grooth, M. A. E. M. Elwenspoek, J. A. G. J. Greve, J. A. B. J. Brugger, and A. A. v. d. B. A. van den Berg, "Direct integration of micromachined pipettes in a flow channel for single DNA molecule study by optical tweezers," Microelectromechanical Systems, Journal of, vol. 10, pp. 238-246, 2001.
[29] J. C. Weaver and Y. A. Chizmadzhev, "Theory of electroporation: A review," Bioelectrochemistry and Bioenergetics, vol. 41, pp. 135-160, 1996.
[30] H. Andersson, W. van der Wijngaart, P. Enoksson, and G. Stemme, "Micromachined flow-through filter-chamber for chemical reactions on beads," Sensors and Actuators B: Chemical, vol. 67, pp. 203-208, 2000.
[31] O. Bakajin, R. Carlons, C. Chou, S. Chan, C. Gabel, J. Knight, T. Cox, and R. Austin, "Sizing, Fractionation and Mixing of Biological Objects via Microfabricated Devices," MicroTAS, pp. 193-198, 1998.
[32] R. H. Carlson, C. V. Gabel, S. S. Chan, R. H. Austin, J. P. Brody, and J. W. Winkelman, "Self-Sorting of White Blood Cells in a Lattice," Physical Review Letters, vol. 79, p. 2149, 1997.
[33] K. H. Gilchrist, L. Giovangrandi, and G. T. A. Kovacs, "Analysis of Microelectrode-Recorded Signals from a Cardiac Cell Line as a Tool for Pharmaceutical Screening," The 11th International Conference on Solid-State Sensors and Actuators, pp. 10-14, 2001.
[34] S. Arndt, J. Seebach, K. Psathaki, H.-J. Galla, and J. Wegener, "Bioelectrical impedance assay to monitor changes in cell shape during apoptosis," Biosensors and Bioelectronics, vol. 19, pp. 583-594, 2004.
[35] L. Ye, T. A. Martin, C. Parr, G. M. Harrison, R. E. Mansel, and W. G. Jiang, "Biphasic effects of 17-β-estradiol on expression of occludin and transendothelial resistance and paracellular permeability in human vascular endothelial cells," Journal of Cellular Physiology, vol. 196, pp. 362-369, 2003.
[36] J. Gau, Jr., E. H. Lan, B. Dunn, C.-M. Ho, and J. C. S. Woo, "A MEMS based amperometric detector for E. Coli bacteria using self-assembled monolayers," Biosensors and Bioelectronics, vol. 16, pp. 745-755, 2001.
[37] M. Niikura, A. Maeda, T. Ikegami, M. Saijo, I. Kurane, and S. Morikawa, "Modification of endothelial cell functions by Hantaan virus infection: prolonged hyper-permeability induced by TNF-alpha of hantaan virus-infected endothelial cell monolayers," Archives of Virology, vol. 149, pp. 1279-1292, 2004.
[38] K. H. Gilchrist, L. Giovangrandi, R. H. Whittington, and G. T. A. Kovacs, "Sensitivity of cell-based biosensors to environmental variables," Biosensors & Bioelectronics, vol. 20, pp. 1397-1406, 2005.
[39] I. Giaever and C. R. Keese, "TOXIC ? CELLS CAN TELL," Chemtech, vol. 22, pp. 116-125, 1992.
[40] M. A. Stuchly and S. S. Stuchly, "Coaxial Line Reflection Methods for Measuring Dielectric Properties of Biological Substances at Radio and Microwave Frequencies-A Review," IEEE Transactions on Instrumentation and Measurement, vol. 29, pp. 176-183, 1980.
[41] T.Athey, M.Stuchly, and S.Stuchly, "Measurement of Radio Frequency Permittivity of Biological Tissues with an Open-Ended Coaxial Line: Part I," IEEE Transactions on Microwave Theory and Techniques, vol. 82, pp. 82-86, 1982.
[42] S. S. Stuchly and C. E. Bassey, "Coplanar microwave sensor for industrial measurements," 12th International Conference on Microwaves and Radar vol. 3, pp. 755-759, 1998.
[43] C. P. Wen, "Coplanar Waveguide: A Surface Strip Transmission Line Suitable for Nonreciprocal Gyromagnetic Device Applications," IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 1087-1090, 1969.
[44] T. Sporkmann, "The Evolution of Coplanar MMICs over the past 30 Years," Microwave Journal, vol. 41, pp. 96-111, 1998.
[45] T. Sporkmann, "The current State of the Art in Coplanar MMICs," Microwave Journal, vol. 41, pp. 60-74, 1998.
[46] J. L. B. Walker, "A survey of European activity on coplanar waveguide," Microwave Symposium Digest, 1993., IEEE MTT-S International, vol. 2, pp. 693-696, 1993.
[47] J. Browne, "Broadband Amps Sport Coplanar Waveguide," Microwaves RF, vol. 26, pp. 131-134, 1987.
[48] J. Browne, "Broadband Amp Drops through Noise Floor," Microwaves RF, vol. 31, pp. 141-144, 1992.
[49] R. E. Stegens and D. N. Alliss, "Coplanar Microwave Integrated Circuit for Integrated Subsystems," Microwave System from Communications News in Technology vol. 17, pp. 84-96, 1987.
[50] T. M. Weller, L. P. B. Katehi, and G. M. Rebeiz, "High performance microshield line components," IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 534-543, 1995.
[51] V. Milanovic, M. Gaitan, E. D. Bowen, and M. E. A. Z. M. E. Zaghloul, "Micromachined microwave transmission lines in CMOS technology," IEEE Transactions on Microwave Theory and Techniques, vol. 45, pp. 630-635, 1997.
[52] F. S. Tse and I. E. Morse, Measurement and instrumentation in engineering. New York: MARCEL DEKKER, INC, 1989.
[53] Y. C. Shih and T. Itoh, "Analysis of conductor-backed coplanar waveguide," Electronics Letters, vol. 18, pp. 538-440, 1982.
[54] "HFSS," Ansoft Corporation, Pittsburg, Pennsylvania.
[55] "AppCad," Agilent Technologies.
[56] "PCB Engraving Machine_EP9702," Everprecision Tech Co., LTD.
[57] J. A. G. Malherbe and A. F. Steyn, "Compensation of step discontinuities in TEM-mode transmission lines," IEEE Transactions on Microwave Theory and Techniques, vol. MTT-26, pp. 883-885, 1978.
[58] S. S. Bedair and I. Wolff, "Fast, accurate and simple approximate analytic formulas for calculating the parameters of supported coplanar waveguides for MMIC's," IEEE Transactions on Microwave Theory and Techniques, vol. 40, pp. 41-48, 1992.
[59] L.-S. Jang and M.-H. Wang, "Microfluidic device for cell capture and impedance measurement," Biomedical Microdevices, vol. 9, pp. 737-743, 2007.
[60] S. Schuy and A. Janshoff, "Microstructuring of phospholipid bilayers on gold surfaces by micromolding in capillaries," Journal of Colloid and Interface Science, vol. 295, pp. 93-99, 2006.
[61] "E5062A ENA Series RF Network Analyzers," Agilent Technologies.
[62] S. Gevorgian, P. L. J. Linner, and E. L. Kollberg, "CAD models for shielded multilayered CPW," IEEE Transactions on Microwave Theory and Techniques, vol. 43, pp. 772-779, 1995.
[63] G. Ghione and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electronics Letters, vol. 20, pp. 179-181, 1984.
[64] G. Ghione and C. U. Naldi, "Coplanar waveguides for MMIC applications: effect of upper shielding, conductor backing, finite-extent ground planes, and line-to-line coupling," IEEE Transactions on Microwave Theory and Techniques, vol. MTT-35, pp. 260-267, 1987.
[65] W. Ingo, "Frontmatter," in Coplanar Microwave Integrated Circuits, 2006, pp. i-xii.
[66] M. A. R. Gunston and J. R. Weale, "Variation of microstrip impedance with strip thickness," vol. 5, pp. 697-8, 1969.
[67] R. Horton, B. Easter, and A. Gopinath, "Variation of microstrip losses with thickness of strip," vol. 7, pp. 490-1, 1971.
[68] T. Kitazawa and Y. Hayashi, "Quasistatic characteristics of a coplanar waveguide with thick metal coating," IEE Proceedings, Part H: Microwaves, Antennas and Propagation, vol. 133, pp. 18-20, 1986.
[69] R. N. Simons and G. E. Ponchak, "Modeling of some coplanar waveguide discontinuities," IEEE Transactions on Microwave Theory and Techniques, vol. 36, pp. 1796-1803, 1988.
[70] K. Beilenhoff, W. Heinrich, and H. L. Hartnagel, "Finite-difference analysis of open and short circuits in coplanar MMIC's including finite metallization thickness and mode conversion," Albuquerque, NM, USA, 1992, pp. 103-106.
[71] K. Beilenhoff, H. Klingbeil, W. Heinrich, and H. L. Hartnagel, "Open and short circuits in coplanar MMIC's," IEEE Transactions on Microwave Theory and Techniques, vol. 41, pp. 1534-1537, 1993.
[72] H. V. Fouad, "Finite boundary corrections to coplanar stripline analysis," Electronics Letters, vol. 16, pp. 604-606, 1980.
[73] G. Ghione and C. Naldi, "Parameters of coplanar waveguides with lower ground plane," Electronics Letters, vol. 19, pp. 734-735, 1983.
[74] T. Kitazawa and Y. Hayashi, "Variatioal method for coplanar waveguide with anisotropic sbustrates," IEE Proceedings, Part H: Microwaves, Antennas and Propagation, vol. 134, pp. 7-10, 1987.
[75] C. Veyres and V. F. Hanna, "Extension of the application of conformal mapping techniques to coplanar lines with finite dimensions," International Journal of Electronics, vol. 48, pp. 47 - 56, 1980.
[76] W. Hilberg, "From Approximations to Exact Relations for Characteristic Impedances," IEEE Transactions on Microwave Theory and Techniques, vol. 17, pp. 259-265, 1969.
[77] G. H. Markx and C. L. Davey, "The dielectric properties of biological cells at radiofrequencies: applications in biotechnology," Enzyme and Microbial Technology, vol. 25, pp. 161-171, 1999.
[78] K. R. Foster and H. P. Schwan, Critical reviews in biomedical engineering vol. 17, 1989.