簡易檢索 / 詳目顯示

研究生: 林哲宇
Lin, Zhe-Yu
論文名稱: AZrNb2O8(A=Zn, Mg)介電陶瓷在微波頻段之研究與應用
Study and Applications of AZrNb2O8(A=Zn, Mg) Dielectric Ceramics at Microwave Frequency
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 114
中文關鍵詞: 微波介電材料微波線
外文關鍵詞: Dielectric materials, Microstrip
相關次數: 點閱:118下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中主要介紹兩大部分,第一部份將介紹基本原理及低損耗(Q>5,000)的介電材料,並探討其在更換一種元素下之微波介電特性;第二部份將介紹其在被動元件之原理與應用,並實作於不同基板上探討元件尺寸的改善。
      第一部份首先要介紹ZnZrNb2O8、MgZrNb2O8陶瓷系統之微波介電特性。研究其材料特性及微波介電性質。由實驗中可得知ZnZrNb2O8在1410℃燒結4小時可得到 最佳之介電特性εr~ 24.7,Q׃~ 42,900 GHz (at 7.88 GHz),τf ~ –78.9 ppm/℃。MgZrNb2O8在1350℃燒結4小時可得到最佳之介電特性 εr~ 26.1,Q׃~ 100,500 GHz (at 7.85 GHz),τf ~ –60.5 ppm/℃。
      第二部份根據濾波器的設計原理,利用基本的電場耦合微帶線結構並加入SLR結構的諧振器及四分之一Open-stub,設計一雙頻(2.45/5.2 GHz)帶通濾波器。由於止帶中產生四個傳輸零點,可有效改善濾波器的頻率響應,因為主要目的在使此雙頻帶通濾波器操作在WLAN通訊系統。最後,我們將此電路實作在FR4、Al2O3和MgZrNb2O8基板上,並量測其頻率響應。由量測的結果可得知,利用高介電係數及低損耗的材料做為電路基板時,確實能有效提升效能和縮小面積。

    There are two main subjects in this thesis. we will introduce basic principle and the low loss of dielectric material (Q>5,000), and try to discuss the microwave dielectric properties with different atom. Second, there will be a discussion of passive components and principle, improvement of circuit size in different substrates.
      First, the microwave dielectric properties of ZnZrNb2O8、MgZrNb2O8 ceramic system have been investigated. The experiment results show that ZnZrNb2O8 ceramics has the best properties at sintering temperature 1410℃ for 4 hours, which could reach the best dielectric properties εr ~ 24.7, Q×f ~ 42,900 (at 7.88 GHz) and τf ~ –78.9 ppm/℃. MgZrNb2O8 ceramics has the best properties at sintering temperature 1350℃ for 4 hours, which could reach the best dielectric properties εr~ 26.1, Q×f ~ 100,500 (at 7.85 GHz) and τf ~ –60.5 ppm/℃.
      Second, according to the design principles of the filter, the use of electrically coupled microstrip line structure combined with an SLR-structure of the resonator and a quarter of open-stub resonator design a dual-band (2.45/5.2 GHz) band-pass filter with four transmission zeros generated in the stop-bands to modify the response of the filter. The dual-band bandpass filter was suitable for the applications in the WLAN communication system.Finally, the pattern was printed on FR4, Al2O3 and MgZrNb2O8 substrates. By measured their frequency responses, using the substrates of high dielectric constant and low loss, which can improve the performance and reduce filter’s size.

    摘要 Ⅰ Abstract Ⅱ 誌謝 Ⅳ 目錄 Ⅴ 圖目錄 Ⅸ 表目錄 XIII 第一章 緒論 1 1-1 前言 1 1-2 研究目的 2 第二章 介電材料原理 3 2-1材料的燒結 3 2-1-1燒結的種類 3 2-1-2材料燒結之擴散方式 5 2-1-3材料燒結之過程 6 2-2 wolframite結構 7 2-3介電共振器(Dielectric resonator:DR) 8 2-4微波介電材料之特性 11 2-4-1介電係數(Dielectric constant:K、εr) 11 2-4-2品質因數(Quality factor:Q) 15 2-4-3共振頻率溫度飄移係數(τf) 17 第三章 微帶線及濾波器原理 18 3-1 濾波器原理 18 3-1-1濾波器的簡介 18 3-1-2濾波器之種類及其頻率響應 19 3-2 微帶線原理 22 3-2-1 微帶傳輸線的簡介 22 3-2-2 微帶線的傳輸模態 22 3-2-3 微帶線各項參數公式計算及考量 23 3-2-4 微帶線的不連續效應 27 3-2-5 微帶線的損失 34 3-3 微帶線諧振器種類 35 3-3-1 λ/4短路微帶線共振器 36 3-3-2 λ/2開路微帶線共振器 37 3-4 共振器間的耦合形式 39 3-4-1 電場耦合 39 3-4-2 磁場耦合 43 3-4-3 混和耦合 47 3-5 饋入結構分析 50 3-5-1 非對稱性饋入 50 3-5-2 對稱性饋入 52 3-6 SLR(Stub-Loaded Resonators) 55 3-7 步階阻抗諧振器 57 3-8 四分之ㄧ波長的阻抗轉換器與open stub 59 3-9 微帶線之雙頻帶通濾波器 61 第四章 實驗程序與量測方法 66 4-1 微波介電材料的製備 66 4-1-1 粉末的製備與球磨 67 4-1-2 粉末的煆燒 67 4-1-3 加入黏劑、過篩 67 4-1-4 壓模成型、去黏劑及燒結 68 4-2 微波介電材料的量測與分析 69 4-2-1 密度測量 69 4-2-2 X-Ray分析 69 4-2-3 SEM、EDS分析 70 4-2-4 介電特性量測與分析 70 4-2-5 共振頻率溫度飄移係數之量測 77 4-2-6 Packing Fraction分析 78 4-3 濾波器的製作與量測 79 第五章 實驗結果與討論 81 5-1 ZnZrNb2O8之微波介電特性 81 5-1-1 ZnZrNb2O8之XRD相組成分析 82 5-1-2 ZnZrNb2O8之EDS與SEM分析 84 5-1-3 ZnZrNb2O8之密度分析結果 87 5-1-4 ZnZrNb2O8之介電係數分析結果 88 5-1-5 ZnZrNb2O8之品質因素 (Q×f) 分析結果 89 5-1-6 ZnZrNb2O8之共振頻率溫度飄移係數分析結果 90 5-2 MgZrNb2O8之微波介電特性 91 5-2-1 MgZrNb2O8之XRD相組成分析 91 5-2-2 MgZrNb2O8之SEM分析 93 5-2-3 MgZrNb2O8之密度分析結果 95 5-2-4 MgZrNb2O8之介電係數分析結果 96 5-2-5 MgZrNb2O8之品質因素 (Q×f) 分析結果 97 5-2-6 MgZrNb2O8之Packing Fraction分析結果 98 5-2-7 MgZrNb2O8之共振頻率溫度飄移係數分析結果 99 5-3 濾波器的模擬與實作 101 5-3-1 使用FR4(玻璃纖維基板)之模擬與實作結果 102 5-3-2 使用Al2O3之模擬與實作結果 104 5-3-3 使用自製基板MgZrNb2O8之模擬與實作結果 106 第六章 結論 110 參考文獻 111

    [1]H. M. O’bryan, J. Thomson, and J. K. Plourde, “A new BaO–TiO2 compound with temperature- stable high permittivity and low microwave loss,” J. Am. Ceram. Soc., 57 [10] 450–453 (1974).
    [2]G. Wolfram and H. E. Göbel, “Existence range, structural and dielectric properties of ZrxTiySnzO4 ceramics (x+y+z = 2),” Mater. Res. Bull., 16 [11] 1455–1463 (1981).
    [3]J. H. Sohn, Y. Inaguma, S. O. Yoon, M. Itoh, T. Nakamura, S. J. Yoon, and H. J. Kim, “Microwave dielectric characteristics of ilmenite-type titanates with high Q values,” Jpn. J. Appl. Phys., 33 [9B] 5466–5470 (1994).
    [4]Y. Ohishi, Y. Miyauchi, H. Ohsato, and K. I. Kakimoto, “Controlled temperature coefficient of resonant frequency of Al2O3–TiO2 ceramics by annealing treatment,” Jpn. J. Appl. Phys., 43 [6A] L749–L751 (2004).
    [5]C. L. Huang, T. J. Yang, and C. C. Huang, “Low dielectric loss ceramics in the ZnAl2O4–TiO2 system as aτf compensator,” J. Am. Ceram. Soc., 92 [1] 119–124 (2009).
    [6]J. W. Cahn and R. B. Heady, “Analysis of Capillary Forces in Liquid-Phase Sintering of Jagged Particles,” J. Am. Ceram. Soc., 53 [7] 406–409 (1970).
    [7]W. J. Huppmann and G. Petzow, “Sintering Processes,” Plenum Press, (1979).
    [8]R. M. German, “Liquid Phase Sintering,” Plenum Press, (1985).
    [9]J. H. Jean and C. H. Lin, “Coarsening of Tungsten Particles in W-Ni-Fe Alloys,” J. Mater. Sci., 24 [2] 500–504 (1989).
    [10]W. F. Smith, 劉品均(譯), 施佑蓉(譯), 材料科學與工程, 第三版, 高立圖書, (2005).
    [11]Eung. Soo. Kim, Byung. Sam. Chun, Robert. Freer, Robert. J. Cernik “Effects of packing fraction and bond valence on microwave dielectric properties of A2+B6+O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics,” Journal of the European Ceramic Society 30 1731–1736 (2010).
    [12]D. Kajfez, “Basic principle give understanding of dielectric waveguides and resonators,” Microwave SysTFm News., 13 152–161 (1983).
    [13]D. Kajfez, A. W. Glisson, and J. James, “Computed model field distributions for isolated dielectric resonators,” IEEE Trans. Microwave Theory Tech., 32 [12] 1609–1616 (1984).
    [14]張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社, (1998).
    [15]鄭景太, 淺談高頻低損失介電材料, 工業材料, 176期, (2001).
    [16]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, 陳皇鈞(譯), “陶瓷材料概論,” 曉出版社, (1988).
    [17]R. L. Geiger, P. E. Allen, and N. R. Strader, “VLSI design techniques for analog and digital circuits, ” McGraw-Hill (1990).
    [18]J. S. Hong and M. J. Lancaster, “Microstrip filters for RF/microwave applications, ” John Wiley & Sons (2001).
    [19]G. Kompa, “Practical microstrip design and applications,” Artech House, (2005).
    [20]張盛富, 戴明鳳, 無線通信之射頻被動電路設計, 全華出版社 (1998).
    [21]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip lines and slotlines,” Second Edition, Artech House (1996).
    [22]J. S. Hong and M. J. Lancaster, “Microstrip filters for RF/Microwave applications,” John Wiley & Sons (2001).
    [23]R. A. Pucel, D. J. Masse, and C. P. Hartwig, “Losses in microstrip,” IEEE Trans. Microwave Theory Tech., MTT-16 342–350 (1968).
    [24]G. L. Matthaei, L. Young, and E. M. T. Jones, “Microwave filters, impedance matching networks and coupling structures,” Artech House (1980).
    [25]E. J. Denlinger, “Losses of microstrip lines,” IEEE Trans. Microwave Theory Tech., 28 [6] 513–522 (1980).
    [26]A. Hennings, E. Semouchkina, A. Baker, and G. Semouchkin, “Design optimization and implementation of bandpass filters with normally fed microstrip resonators loaded by high-permittivity dielectric,” IEEE Trans. Microwave Theory Tech.,54 [3] 1253–1261 (2006).
    [27]L. H. Hsieh, K. Chang, “Tunable microwave bandpass filters with two transmission zeros,” IEEE Trans. Microwave Theory Tech., 51 [2] 520-525, Feb. (2003).
    [28]S.-Y. Lee and C.-M. Tsai, “New cross-coupled filter design using improved hairpin resonators,” IEEE Trans. Microwave Theory Tech., 48 2482–2490, Dec. (2000).
    [29]K. C. Gupta, R. Garg, I. Bahl, and P. Bhartia, “Microstrip lines and slotlines, ” 2nd ed. Boston, MA: Artech House, ch. 3.
    [30]X.Y. Zhang, J.X.Chen, Q.Xue,and S.M.Li, “Dual-band bandpass filters using stub-loaded resonators,” IEEE Microw. Wireless. Compon. Lett., 8 [17] (2007).
    [31]M. Makimoto and S.Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microwave Theory Tech., 28 [12] 1413–1417 (1980).
    [32]Q. X. Chu and F. C. Chen, “A compact dual-band bandpass filter using meandering stepped impedance resonators,” IEEE Microw. Wireless. Compon. Lett., 18 [4] 320–322 (2008).
    [33]S. H. Cha, “Measurements of microwave conductivity and dielectric constant by the cavity perturbation method and their errors,” IEEE. Trans. MTT, MTT-33 519(1985).
    [34]Hsieh, L. H. and K. Chang, “Tunable microstrip bandpass filters with two transmission zeros,” IEEE Trans. Microwave Theory Tech., 51 [2] 520–525, (2003).
    [35]B. W. Hakki and P. D. Coleman, “A dielectric resonator method of measuring inductive capacities in the millimeter range,” IEEE Trans. Microwave Theory Tech., 8 [4] 402–410 (1960).
    [36]W. E. Courtney, “Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave Insulators,” IEEE Trans. Microwave Theory Tech., 18 [8] 476–485 (1970).
    [37]P. Wheless and D. Kajfez, “The use of higher resonant modes in measuring the dielectric constant of dielectric resonators,” IEEE Trans. Microwave Theory Tech., 85 [1] 473–476 (1985).
    [38]Y. Kobayashi and M. Katoh, “Microwave measurement of dielectric properties of Low-Loss materials by the dielectric rod resonator method,” IEEE Trans. Microwave Theory Tech., 33 [7] 586–592 (1985).
    [39]Dong. Wan. Kim, Jin. Ho. Kim, Jeong. Ryeol. Kim and Kug. Sun. Hong, ‘‘Phase constitutions and Microwave dielectric properties of Zn3Nb2O8–TiO2’’ Jpn. J. Appl. Phys. 40 5994–5998 (2001).
    [40]S. Y. Cho, M. K. Seo, K. S. Hong, and S. J. Park, ‘‘Influence of ZnO evaporation on the microwave dielectric properties of La(Zn1/2Ti1/2)O3,’’ Mater. Res. Bull., 32 [6]725–735 (1997).

    下載圖示 校內:2018-07-31公開
    校外:2018-07-31公開
    QR CODE