簡易檢索 / 詳目顯示

研究生: 呂修麟
Lu, Xiu-Lin
論文名稱: 低軌衛星的AIS接收演算法開發與硬體實現
Development and Hardware Implementation of AIS Receiving Algorithms for Low Earth Orbit Satellites
指導教授: 莊智清
Juang, Jyh-Ching
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 英文
論文頁數: 116
中文關鍵詞: 低軌衛星自動識別系統硬體實作海事監控
外文關鍵詞: LEO satellites, AIS, Hardware implementation, Maritime monitoring
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,商業化之立方衛星在全球太空產業迅速成長,這是由於立方衛星相比於大型衛星具有成本低、研發週期短與發射彈性高等優勢,能在限制功耗與體積的條件下執行多樣化任務,也適合透過星座形式部署大範圍通訊與監測系統。
    在海事監管方面,陸地上之自動識別系統( AIS , Automatic Identification System)因地球曲率與天線高度受限,對遠洋船舶的即時覆蓋不足;若於低軌衛星搭載AIS接收酬載,可大幅延伸 AIS 監控範圍至公海。臺灣位處西太平洋航運樞紐,透過衛星接收 AIS 得以即時掌握周邊海域船舶動態,對航安管理、漁業資源保護與國土安全均具有相當大的價值。
    本論文專注於立方衛星 AIS 訊號接收演算法之開發與驗證。首先,以系統模型分析都普勒效應與鏈路預算,並且評估天線場型與衛星姿態調整對接收 AIS訊號的影響,以尋求立方衛星之最佳配置。訊號接收演算法於 MATLAB 建立非相干之差分解調流程,採用最大似然序列估計解調方法強化低訊號雜訊比情況的接收效能,並利用衛星在軌蒐集之 AIS 訊號樣本進行演算法驗證,確認所提出接收機演算法在真實軌道環境下之有效性與可靠性。此外,亦針對所提出的衛星 AIS 訊號接收演算法進行硬體實作與優化,選用與在軌衛星相同的硬體平台 ADRV9361-Z7035,實現即時處理能力,除了於地面完成功能驗證,也實際進行台南安平港 AIS 訊號接收試驗,成功證明本論文提出之接收機演算法與硬體架構皆具備實務應用之效能與穩定性。綜上所述,本論文完成從演算法設計、硬體實作到實際資料驗證之完整流程,所提出之 AIS 接收技術不僅具備實用性與穩定性,亦具潛力應用於未來低軌衛星之海事監控任務。

    In recent years, commercial CubeSats have rapidly grown in the global space industry. This is because CubeSats have several advantages over large satellites, including lower cost, shorter development time, and higher flexibility in launch. CubeSats can carry out a variety of missions under limitations in payload, power, and size. They are also suitable for building large-scale communication and monitoring systems through satellite constellations.
    In maritime surveillance, shore-based Automatic Identification System (AIS) has limited real-time coverage of ocean-going ships due to the Earth's curvature and the height of ground antennas. If AIS receivers are placed on Low Earth Orbit (LEO) satellites, the monitoring range can be greatly extended to cover open seas. Taiwan is located in the West Pacific shipping hub, and using satellites to receive AIS signals helps monitor nearby sea areas in real time, which is valuable for maritime safety, fishery protection, and national security.
    This thesis focuses on the development and verification of AIS signal receiving algorithms for CubeSats. First, a system model is used to analyze Doppler effects and the link budget. It also evaluates how antenna patterns and satellite attitude affect AIS signal reception, in order to find the best configuration for CubeSats. The receiving algorithm is built in MATLAB and uses a non-coherent differential demodulation process. An Maximum Likelihood Sequence Estimation (MLSE) demodulation method is applied to improve reception performance under low Signal-to-Noise Ratio (SNR ) real AIS signal data collected by satellites is used to verify the algorithm, proving its effectiveness and reliability under real orbital conditions.
    In addition, the proposed satellite AIS receiving algorithm is implemented in hardware and optimized. The same hardware platform as the on-orbit satellite, ADRV9361-Z7035, is used to achieve real-time processing. The function is verified on the ground, and a real AIS signal reception test is performed at Anping Port in Tainan. The results successfully prove that both the proposed algorithm and hardware design are practical and stable for real applications.
    In summary, this thesis completes a full workflow from algorithm design to hardware implementation and real data validation. The proposed AIS receiving technique is not only practical and stable, but also has great potential for future maritime monitoring missions using LEO satellites.

    摘要 I Abstract III Acknowledgement V Contents VI List of Tables IX List of Figures X List of Abbreviations XII Chapter 1 Introduction 1 1.1 Objective and Motivation 1 1.1.1 Emergence of CubeSats and Software-Defined Radios 1 1.1.2 Demand and Value of Satellite-Based AIS 1 1.1.3 Challenges of Satellite-Based AIS 2 1.2 Literature Review 3 1.3 Contributions 7 1.4 Thesis Organization 8 Chapter 2 System Overview 10 2.1 IRIS-F2 and IRIS-F3 11 2.1.1 NCKU-SDR 12 2.1.2 AD9361 14 2.2 Impact of Antenna Pattern and Attitude on Signal Reception 15 2.3 Link Budget 21 Chapter 3 AIS System 24 3.1 Overview of AIS System 24 3.1.1 Background and Development 24 3.1.2 International Standards and related Mechanism 25 3.2 Characteristics and Structure 26 3.2.1 GMSK Modulation 26 3.2.2 Packet Format and Structure 29 3.3 AIS Reception Challenges on LEO 31 3.3.1 Doppler Shift 31 3.3.2 Signal Collision 32 Chapter 4 Receiver Algorithm Design 35 4.1 Signal Preprocessing 36 4.1.1 Filter Design 36 4.1.2 Frequency Shift 39 4.2 Demodulation 40 4.2.1 Doppler Compensation 41 4.2.2 Filter Design 46 4.2.3 Matched Filter 47 4.2.4 Non-coherent GMSK Demodulation 47 4.2.4.1 Quadrature Demodulation 48 4.2.4.2 Symbol Timing Recovery based Demodulation 51 4.2.4.3 MLSE-Based Demodulation 53 4.3 Decode 62 4.3.1 Bit Destuffing 62 4.3.2 CRC Check 62 4.3.3 Message Decoder 63 4.4 MATLAB Simulation and Comparative Analysis 63 Chapter 5 Hardware Design and Experiment 66 5.1 System Overview 67 5.2 Architecture and Data Flow 68 5.2.1 Signal Preprocessing 69 5.2.2 Demodulation 69 5.2.3 Decoder 71 5.3 Hardware Resource Utilization 72 5.4 Hardware Experiments 73 5.4.1 Doppler Tolerance Test Using USRP 74 5.4.2 Real-World Signal Reception Test 76 Chapter 6 Validation Using On-Orbit Data 81 6.1 Mission Planning 81 6.2 Signal Analysis and Verification 87 Chapter 7 Conclusion 93 7.1 Conclusion 93 7.2 Future Work 94 Reference 96

    [1] “CubeSat Technology Past and Present: Current State-of-the-Art Survey,” NASA, TP-20210000201, Feb. 2022. Accessed: July 14, 2025. [Online]. Available: https://ntrs.nasa.gov/api/citations/20210000201/downloads/TP-20210000201.pdf?utm_source=chatgpt.com
    [2] “SOLAS Chapter V, Regulation 19,” U.S. Coast Guard, SOLAS.V.19.2.1-5, 2002. Accessed: July 07, 2025. [Online]. Available: https://www.navcen.uscg.gov/sites/default/files/pdf/AIS/SOLAS.V.19.2.1-5.pdf
    [3] “ITU-R Recommendation M.1371-5,” International Telecommunication Union, Feb. 2014. [Online]. Available: https://www.itu.int/dms_pubrec/itu-r/rec/m/R-REC-M.1371-5-201402-I!!PDF-E.pdf
    [4] J. A. Larsen and H. P. Mortensen, “In orbit validation of the AAUSAT3 SDR based AIS receiver,” in 2013 6th International Conference on Recent Advances in Space Technologies (RAST), Istanbul, Turkey: IEEE, June 2013, pp. 487–491. doi: 10.1109/RAST.2013.6581257.
    [5] R. Wawrzaszek, M. Waraksa, M. Kalarus, G. Juchnikowski, and T. Górski, “Detection and Decoding of AIS Navigation Messages by a Low Earth Orbit Satellite,” in Aerospace Robotics III, J. Sasiadek, Ed., in GeoPlanet: Earth and Planetary Sciences. , Cham: Springer International Publishing, 2019, pp. 45–62. doi: 10.1007/978-3-319-94517-0_4.
    [6] T. Eriksen et al., “In-orbit AIS performance of the Norwegian microsatellites NorSat-1 and NorSat-2,” CEAS Space J, vol. 12, no. 4, pp. 503–513, Dec. 2020, doi: 10.1007/s12567-019-00289-1.
    [7] A. N. Skauen, “Ship tracking results from state-of-the-art space-based AIS receiver systems for maritime surveillance,” CEAS Space J, vol. 11, no. 3, pp. 301–316, Sept. 2019, doi: 10.1007/s12567-019-00245-z.
    [8] K. Reiten, R. Schlanbusch, R. Kristiansen, F. Vedal, P. J. Nicklasson, and P. C. Berntsen, “Link and Doppler Analysis for Space-Based AIS Reception,” in 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey: IEEE, June 2007, pp. 556–561. doi: 10.1109/RAST.2007.4284055.
    [9] N. Muhtadin et al., “Doppler Analysis for the S-AIS Receiver for the Indonesian LEO Constellation,” in 2022 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia: IEEE, Nov. 2022, pp. 1–4. doi: 10.1109/ICARES56907.2022.9992305.
    [10] P. Burzigotti, A. Ginesi, and G. Colavolpe, “Advanced receiver design for satellite-based AIS signal detection,” in 2010 5th Advanced Satellite Multimedia Systems Conference and the 11th Signal Processing for Space Communications Workshop, Cagliari, Italy: IEEE, Sept. 2010, pp. 1–8. doi: 10.1109/ASMS-SPSC.2010.5586907.
    [11] F. Clazzer, F. Lázaro, and S. Plass, “Enhanced AIS receiver design for satellite reception,” CEAS Space J, vol. 8, no. 4, pp. 257–268, Dec. 2016, doi: 10.1007/s12567-016-0122-8.
    [12] A. Hassanin, F. Lazaro, and S. Plass, “An advanced AIS receiver using a priori information,” in OCEANS 2015 - Genova, Genova, Italy: IEEE, May 2015, pp. 1–7. doi: 10.1109/OCEANS-Genova.2015.7271475.
    [13] S. Li, L. Chen, and Y. Zhao, “GMSK Viterbi Demodulation for Satellite-AIS,” in 2018 IEEE 3rd International Conference on Signal and Image Processing (ICSIP), Shenzhen: IEEE, July 2018, pp. 327–331. doi: 10.1109/SIPROCESS.2018.8600466.
    [14] R. Prevost, M. Coulon, D. Bonacci, J. LeMaitre, J.-P. Millerioux, and J.-Y. Tourneret, “Extended constrained Viterbi algorithm for AIS signals received by satellite,” in 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy: IEEE, Oct. 2012, pp. 1–6. doi: 10.1109/ESTEL.2012.6400111.
    [15] L. Kanaan, K. Amis, F. Guilloud, and R. Chauvat, “Application of the List Viterbi Algorithm for Satellite-based AIS Detection,” 2025, arXiv. doi: 10.48550/ARXIV.2503.01744.
    [16] S. Jayasimha, J. Paladugula, A. V. Gadiraju, and M. K. Medam, “Satellite-based AIS receiver for dense maritime zones,” in 2017 9th International Conference on Communication Systems and Networks (COMSNETS), Bengaluru, India: IEEE, Jan. 2017, pp. 15–22. doi: 10.1109/COMSNETS.2017.7945353.
    [17] A. Kuznetsova, N. D. Cu, and I. Lavrenyuk, “Collision Reduction Methods and Decollision Processing Algorithms in the Space Segment of AIS,” in 2024 International Conference on Electrical Engineering and Photonics (EExPolytech), Saint Petersburg, Russian Federation: IEEE, Oct. 2024, pp. 130–133. doi: 10.1109/EExPolytech62224.2024.10755739.
    [18] H. Duan, J. Zhao, G. Xin, Z. Tan, and S. Wang, “Separation Algorithm for Satellite-Borne AIS Collision Signals,” in 2024 9th International Conference on Computer and Communication Systems (ICCCS), Xi’an, China: IEEE, Apr. 2024, pp. 818–822. doi: 10.1109/ICCCS61882.2024.10603256.
    [19] Shexiang Ma and Yanjun Ma, “An improved FastICA algorithm for signal separation of satellite-based AIS,” in 2014 International Conference on Information and Communications Technologies (ICT 2014), Nanjing, China: Institution of Engineering and Technology, 2014, p. 2.066-2.066. doi: 10.1049/cp.2014.0608.
    [20] Shexiang Ma and Yongqiang Guan, “Space-based AIS multi-user separation based on the improved complex value FastICA,” in Proceedings of 2013 2nd International Conference on Measurement, Information and Control, Harbin, China: IEEE, Aug. 2013, pp. 537–541. doi: 10.1109/MIC.2013.6758021.
    [21] C. Li, L. Zhu, Z. Luo, Z. Zhang, Y. Liu, and Y. Yang, “Design and Implementation of Blind Source Separation Based on BP Neural Network in Space-Based AIS,” Front. Space Technol., vol. 2, p. 756478, Sept. 2021, doi: 10.3389/frspt.2021.756478.
    [22] K. Nozaki, Y. Takanezawa, Y. Chang, K. Fukawa, and D. Hirahara, “Multiuser Detection of Collided AIS Packets with Accurate Estimates of Doppler Frequencies,” in 2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland: IEEE, Apr. 2021, pp. 1–5. doi: 10.1109/VTC2021-Spring51267.2021.9448767.
    [23] K. Nozaki, Y. Chang, K. Fukawa, and D. Hirahara, “Signal Separation of Collided AIS Packets Employing Iterative Channel Parameter Estimation in Space-based AIS,” in 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring), Helsinki, Finland: IEEE, June 2022, pp. 1–5. doi: 10.1109/VTC2022-Spring54318.2022.9860422.
    [24] K. Nozaki, Y. Chang, K. Fukawa, and D. Hirahara, “Multiuser Detection with Accurate Channel Estimation for Collided AIS Packets,” IEICE Trans. Commun., vol. E108-B, no. 2, pp. 152–163, Feb. 2025, doi: 10.23919/transcom.2024EBP3041.
    [25] S. Uehashi, Y. Nouda, M. Hangai, and T. Ohgane, “Successive Interference Cancellation for Asynchronous Signal Collision in Space-based AIS,” in 2022 IEEE Aerospace Conference (AERO), Big Sky, MT, USA: IEEE, Mar. 2022, pp. 1–7. doi: 10.1109/AERO53065.2022.9843214.
    [26] M. Picard, M. R. Oularbi, G. Flandin, and S. Houcke, “An adaptive multi-user multi-antenna receiver for satellite-based AIS detection,” in 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal Processing for Space Communications Workshop (SPSC), Vigo, Spain: IEEE, Sept. 2012, pp. 273–280. doi: 10.1109/ASMS-SPSC.2012.6333088.
    [27] W. Hasbi, Kamirul, M. Mukhayadi, and U. Renner, “The Impact of Space-Based AIS Antenna Orientation on In-Orbit AIS Detection Performance,” Applied Sciences, vol. 9, no. 16, p. 3319, Aug. 2019, doi: 10.3390/app9163319.
    [28] N. Fadilah, I. Choiriyah, and N. Najati, “Analysis of Two Monopole Antennas Placement on Satellite for AIS Signal Reception,” in 2019 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES), Yogyakarta, Indonesia: IEEE, Oct. 2019, pp. 1–5. doi: 10.1109/ICARES.2019.8914340.
    [29] P. Pop, “AD9361, AD9364 and AD9363 [Analog Devices Wiki],” AD9361, AD9364 and AD9363. Accessed: July 07, 2025. [Online]. Available: https://wiki.analog.com/resources/eval/user-guides/ad-fmcomms2-ebz/ad9361
    [30] “Design and Analysis Using Antenna Designer - MATLAB & Simulink,” Design and Analysis Using Antenna Designer - MATLAB & Simulink. Accessed: Aug. 03, 2025. [Online]. Available: https://www.mathworks.com/help/antenna/gs/antenna-design-and-analysis-using-antenna-designer-app.html
    [31] Oguz Kislal, “GMSK Modulator/Demodulator Design and Implementation on FPGA for Cube Satellites,” 2016, doi: 10.13140/RG.2.2.24158.64321.
    [32] 莊智清, 衛星導航. 全華圖書, 2012.
    [33] M. R. D, A. S, and S. B. A, “Space Based Automatic Identification System (AIS) Receiver Architecture and its Performance in Collision Scenario,” SSRG-IJECE, vol. 12, no. 3, pp. 143–150, Mar. 2025, doi: 10.14445/23488549/IJECE-V12I3P114.
    [34] Mathapo Kf and Van Rooyen G-J, “A Software Defined Radio AIS for the ZA-002 Satellite,” in Small Satellite Conference 2006, South Africa: Digital Signal Processing and Telecommunications Research Group, University of Stellenbosch, 2006.
    [35] M. A. J. Gallardo and G. Ruy, “FM Discriminator for AIS Satellite Detection,” in Personal Satellite Services, vol. 43, K. Sithamparanathan, M. Marchese, M. Ruggieri, and I. Bisio, Eds., in Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol. 43. , Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 19–34. doi: 10.1007/978-3-642-13618-4_2.
    [36] M. Rice, Digital Communications: A Discrete-Time Approach. Prentice-Hall, 2009.
    [37] J. P. Fonseka, “Noncoherent detection with Viterbi decoding for GMSK signals,” IEE Proc., Commun., vol. 143, no. 6, p. 373, 1996, doi: 10.1049/ip-com:19960814.
    [38] D. Song, R. Yao, H. Ma, X. Zuo, Y. Fan, and J. Xu, “One-Step Backtracking Algorithm Based on Viterbi Algorithm in GMSK Demodulation,” in 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Macau, China: IEEE, Aug. 2020, pp. 1–5. doi: 10.1109/ICSPCC50002.2020.9259557.
    [39] T. Zhang, M. Guo, L. Ding, F. Yang, and L. Qian, “Soft Output Viterbi Decoding for space-based AIS receiver,” in 2016 22nd Asia-Pacific Conference on Communications (APCC), Yogyakarta, Indonesia: IEEE, Aug. 2016, pp. 383–387. doi: 10.1109/APCC.2016.7581438.
    [40] “GitHub - analogdevicesinc/hdl: HDL libraries and projects,” GitHub - analogdevicesinc/hdl: HDL libraries and projects. Accessed: July 07, 2025. [Online]. Available: https://github.com/analogdevicesinc/hdl
    [41] “MarineTraffic: Global Ship Tracking Intelligence | AIS Marine Traffic,” MarineTraffic: Global Ship Tracking Intelligence | AIS Marine Traffic. Accessed: July 14, 2025. [Online]. Available: https://www.marinetraffic.com/en/ais/home

    無法下載圖示 校內:2030-08-14公開
    校外:2030-08-14公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE