簡易檢索 / 詳目顯示

研究生: 張哲源
Chang, Che-Yuan
論文名稱: 以氟離子電漿技術研製增強型氮化鋁鎵/氮化鎵金氧半高電子遷移率電晶體
Enhancement-Mode AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistors by Fluorine Plasma Treatment
指導教授: 王永和
Wang, Yeong-Her
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 93
中文關鍵詞: 氮化鋁鎵氮化鎵高電子遷移率電晶體氟離子電漿處理液相沉積法二氧化鋯
外文關鍵詞: AlGaN, GaN, HEMT, fluorine plasma treatment, liquid-phase deposition, ZrO2
相關次數: 點閱:120下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中我們成功利用氟離子電漿處理技術製作增強型氮化鋁鎵/氮化鎵高電子遷移率電晶體,藉由佈值氟離子在氮化鋁鎵層當中,提高異質接面處的導電帶至費米能階以上,有效提升電晶體的臨界電壓值至0.3V,最大電流密度與最大轉換電導值為522 mA/mm和127 mS/mm。此外,以低溫、低製程困難度的液相沉積法,沉積高介電常數的二氧化鋯薄膜,製備出金氧半高電子遷移率電晶體,藉以改善部分掘入製程而造成閘極漏電流增加以及崩潰電壓下降的問題。為了瞭解液相沉積之二氧化鋯薄膜的化學組成、結晶相、表面粗糙度以及厚度,採用了〈一〉化學分析電子光譜儀、〈二〉X光繞射儀、〈三〉原子力顯微鏡與、〈四〉穿透式電子顯微鏡,分析其物理和化學特性,而閘極漏電流有效地降低至6.96 × 10-5 A/mm,三端崩潰電壓也提升至90 V,元件的高頻特性與低頻雜訊皆能有所改善。

    In this study, we have successively fabricated the enhancement-mode AlGaN/GaN HEMTs by fluorine plasma treatment techniques. The conduction band at the AlGaN/GaN interface is raised above the Fermi level as a result of the negatively charged fluorine ions incorporated in AlGaN layer. Therefore, the threshold voltage is effectively improved to 0.3 V. The maximum drain current and maximum transconductance are 522 mA/mm and 127 mS/mm, respectively. Besides, a low temperature and low fabrication difficulty liquid-phase deposition (LPD) is utilized to deposit a high dielectric constant thin film of ZrO2. The metal-oxide-semiconductor HEMT with ZrO2 thin film is also fabricated, which can solve the issues caused by the recess procedure, such as higher gate leakage current and lower breakdown voltage. In order to analysis the chemical composition, crystal phase, surface roughness, and thickness of the LPD-ZrO2 thin film, (1) Electron Spectroscopy for Chemical Analysis (2) X-Ray Diffractometer (3) Atomic Force Microscopy , (4) Transmission Electron Microscopy are adopted in this research. The gate leakage current can be effectively suppressed at 6.96 × 10-5 A/mm, and the three-terminal breakdown voltage is increased to 90 V. The high-frequency characteristics and low-frequency noise are also improved.

    ABSTRACT (Chinese) I ABSTRACT (English) III ACKNOWLEDGEMENT V CONTENTS VII FIGURE CAPTIONS X TABLE CAPTIONS XII Chapter 1 Introduction 1.1 Background 1 1.2 Motivation 5 1.3 Organization 7 Chapter 2 Principle of AlGaN/GaN HEMT 2.1 Lattice Structure 8 2.2 AlGaN/GaN Heterojunction 10 2.2.1 Two-Dimensional Electron Gas (2DEG) 10 2.2.2 Spontaneous Polarization 11 2.2.3 Piezoelectric Polarization 16 Chapter 3 Experiments and Device Fabrication 3.1 Experimental Equipment 19 3.1.1 Sputter and E-Gun Evaporator (PVD) 19 3.1.2 High-Temperature Furnace 20 3.1.3 Spin Coater 20 3.1.4 Mask Aligner 20 3.1.5 ICP Etching System 21 3.1.6 RIE System 21 3.2 Fabrication Process 25 3.2.1 Mesa Isolation 25 3.2.2 Source and Drain Ohmic Contact 26 3.2.3 Gate Pattern Definition 27 3.2.4 Partial Recess and Fluorine Plasma Treatment 28 3.2.5 Liquid-Phase Deposition ZrO2 Thin Film 28 3.2.6 Schottky Gate Contact 29 Chapter 4 Results and Discussion 4.1 AlGaN/GaN HEMT with Partial Recess and Fluorine Plasma Treatment 37 4.1.1 Physical Properties 37 4.1.1.1 Secondary Ion Mass Spectrometer (SIMS) 37 4.1.2 Device Performance 39 4.1.2.1 Saturation Drain Current 39 4.1.2.2 Transfer Characteristics and Transconductance 42 4.1.2.3 Gate Leakage Current 49 4.1.2.4 Subthreshold Swing 51 4.1.2.5 OFF-State Breakdown Voltage 53 4.2 AlGaN/GaN MOSHEMT with Partial Recess and Fluorine Plasma Treatment 56 4.2.1 Chemical and Physical Properties 56 4.2.1.1 X-ray Photoelectron Spectroscopy (XPS) 56 4.2.1.2 X-Ray Diffraction (XRD) 56 4.2.1.3 Atomic Force Microscope (AFM) 58 4.2.1.4 Transmission Electron Microscopy (TEM) 61 4.2.2 Device Performance 63 4.2.2.1 Saturation Drain Current 63 4.2.2.2 Transfer Characteristics and Transconductance 63 4.2.2.3 Gate Leakage Current 65 4.2.2.4 Subthreshold Swing 68 4.2.2.5 OFF-State Breakdown Voltage 68 4.2.2.6 Capacitance-Voltage Measurement 71 4.2.2.7 Cutoff Frequency & Maximum Oscillation Frequency 71 4.2.2.8 Flicker Noise 73 4.2.2.9 Pulse I-V Characteristics 76 4.2.2.10 Output Power Characteristics 78 Chapter 5 Conclusion 80 Chapter 6 Future Work 84 References 86

    [1] U. K. Mishra, and T. E. Kazior, “GaN-Based RF Power Devices and Amplifiers,” Proc. IEEE, vol. 96, no. 2, pp. 287–305, Feb. 2008.
    [2] L. F. Eastman, and U.K. Mishra, “The Toughest Transistor Yet [GaN transistors],” IEEE SPECTRUM, vol. 39, pp. 28-33, May 2002.
    [3] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, I. Omura, T. Ogura ,and H. Ohashi, “High Breakdown Voltage AlGaN–GaN Power-HEMT Design and High Current Density Switching Behavior,” IEEE Trans. Electron Devices, vol. 50, no. 12, pp. 2528-2531, Dec. 2003.
    [4] S. C. Jain, M. Willander, J. Narayan, and R. V. Overstraeten, “III–Nitrides: Growth, Characterization, and Properties,” J. Appl. Phys., vol. 87, no. 3, pp. 965-1006, Feb. 2000.
    [5] S. Nakamura, and M. R. Krames, “History of Gallium–Nitride-Based Light-Emitting Diodes for Illumination,” Proc. IEEE, vol. 101, no. 10, pp.2211-2220, Oct. 2013.
    [6] C. C. Wang, H. Ku, C. C. Liu, K. K. Chong, C. I Hung, Y. H. Wang, and M. P. Houng, “White-Light Emission From Near UV InGaN–GaN LED Chip Precoated With Blue/Green/Red Phosphors,” Appl. Phys. Lett., vol. 91, no. 12, pp. 121109-1 - 121109-3, Sep. 2007.
    [7] H. Amano, T. Asahi ,and I. Akasaki, “Stimulated Emission Near Ultraviolet at Room Temperature from a GaN Film Grown on Sapphire by MOVPE Using an AlN Buffer Layer,” Jpn. J. Appl. Phys., vol. 29, no. 2, pp. L205-L206, Feb. 1990.
    [8] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, and M. Razeghi, “High-speed, Low-Noise Metal–Semiconductor–Metal Ultraviolet Photodetectors Based on GaN,” Appl. Phys. Lett., vol. 74, no. 5, pp. 762-764, Feb. 1999.
    [9] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J.-I. Chyi, C.-M. Lee, C.-C. Chuo, S. N. George Chu ,and R. G. Wilson, “High Voltage GaN Schottky Rectifiers,” IEEE Trans. Electron Devices, vol. 47, no. 4, pp. 692-696, Apr. 2000.
    [10] K. Kanto, A. Satomi, Y. Asahi, Y. Kashiwabara, K. Matsushita ,and K. Takagi, “An X-band 250W Solid-State Power Amplifier using GaN Power HEMTs” in Proc. IEEE Radio and Wireless Symposium, Jan. 2008, pp. 77-80.
    [11] S. Davis, “SiC and GaN Vie for Slice of the Electric Vehicle Pie,” Power Electronics, Nov. 2009.
    [12] W.B. Lanford, T. Tanaka, Y. Otoki, and I. Adesida, “Recessed-Gate Enhancement-Mode GaN HEMT with High Threshold Voltage,” Electron. Lett. , vol. 41, no. 7, pp. 449-450, Mar. 2005.
    [13] W. Saito, Y. Takada, M. Kuraguchi, K. Tsuda, and I. Omura, “Recessed-Gate Structure Approach Toward Normally Off High-Voltage AlGaN/GaN HEMT for Power Electronics Applications,” IEEE Trans. Electron Devices, vol. 53, no. 2, pp. 356-362, Feb. 2006.
    [14] T. Oka, and T. Nozawa, “AlGaN/GaN Recessed MIS-Gate HFET with High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications,” IEEE Electron Device Lett. , vol. 29, no. 7, pp. 668-670, Jul. 2008.
    [15] K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192-194, Mar. 2010.
    [16] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, and N. Hara, “Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 189-191, Mar. 2010.
    [17] A. Endoh, Y. Yamashita, K. Ikeda, M. Higashiwaki, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Non-Recessed-Gate Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors with High RF Performance,” Jpn. J. Appl. Phys., vol. 43, no. 4, pp. 2255-2258, 2004.
    [18] Y. Ohmaki, M. Tanimoto, S. Akamatsu, and T. Mukai, “Enhancement-mode AlGaN/AlN/GaN high electron mobility transistor with low on-state resistance and high breakdown voltage,” Jpn. J. Appl. Phys., vol. 45, no. 44, pp. 1168-1170, 2006.
    [19] R. Brown, D. Macfarlane, A. Al-Khalidi, X. Li, G. Ternent, H. Zhou, I. Thayne, and E. Wasige, “A Sub-Critical Barrier Thickness Normally-Off AlGaN/GaN MOS-HEMT,” IEEE Electron Device Lett., vol. 35, no. 9, pp. 906-908, Sep. 2014.
    [20] X. Hu, G. Simin, J. Yang, M. A. Khan, R. Gaska, and M. S. Shur, “Enhancement mode AIGaN/GaN HFET with selectively grown pn junction gate,” Electron. Lett. , vol. 36, no. 8, pp. 753-754, Apr. 2000.
    [21] T. Mizutani, M. Ito, S. Kishimoto, and F. Nakamura, “AlGaN/GaN HEMTs with Thin InGaN Cap Layer for Normally Off Operation,” IEEE Electron Device Lett. , vol. 28, no. 7, pp. 549-551, Jul. 2007.
    [22] I. Hwang, J. Kim, H. S. Choi, H. Choi, J. Lee, K. Y. Kim, J. B. Park, J. C. Lee, J. Ha, J. Oh, J. Shin, and U. I. Chung, “p-GaN Gate HEMTs With Tungsten Gate Metal for High Threshold Voltage and Low Gate Current,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 202-204, Feb. 2013.
    [23] Y. Cai, Y. Zhou, K. J. Chen, and K. M. Lau, “High-Performance Enhancement-Mode AlGaN/GaN HEMTs Using Fluoride-Based Plasma Treatment,” IEEE Electron Device Lett. , vol. 26, no. 7, pp. 435-437, Jul. 2005.
    [24] T. Palacios, C. S. Suh, A. Chakraborty, S. Keller, S. P. DenBaars, and U. K. Mishra, “High-Performance E-Mode AlGaN/GaN HEMTs,” IEEE Electron Device Lett. , vol. 27, no. 6, pp. 428-430, Jun. 2006.
    [25] S. Jia, Y. Cai, D. Wang, B. Zhang, K. M. Lau, and K. J. Chen, “Enhancement-Mode AlGaN/GaN HEMTs on Silicon Substrate,” IEEE Trans. Electron Devices, vol. 53, no. 6, pp. 1474-1477, Jun. 2006.
    [26] R. Wang, Y. Cai, C. W. Tang, K. M. Lau, and K. J. Chen, “Enhancement-Mode Si3N4/AlGaN/GaN MISHFETs,” IEEE Electron Device Lett. , vol. 27, no. 10, pp. 793-795, Oct. 2006.
    [27] Y. Cai, Y. Zhou, K. M. Lau, and K. J. Chen, “Control of Threshold Voltage of AlGaN/GaN HEMTs by Fluoride-Based Plasma Treatment: From Depletion Mode to Enhancement Mode,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2207-2215, Sep. 2006.
    [28] S. Basu, P. K. Singh, P. W. Sze and Y. H. Wang, “AlGaN/GaN Metal-Oxide-Semiconductor High Electron Mobility Transistor with Liquid Phase Deposited Al2O3 as Gate Dielectric,” J. Electrochem. Soc., vol. 157, no. 10, pp. H947-H951, Aug. 2008.
    [29] P. E. Van Camp, V. E. Van Doren, and J. T. Devreese, “High-Pressure Properties of Wurtzite- and Rocksalt-Type Aluminum Nitride,” Phys. Rev. B, vol.44, no.16, pp. 9056-9059, Oct. 1991.
    [30] T. Yao, S.-K. Hong, Oxide and Nitride Semiconductors: Processing, Properties, and Applications. New York: Springer, 2009.
    [31] B. Paulus, F. J. Shi, and H. Stoll, “A Correlated AB Initio Treatment of The Zinc-Blende Wurtzite Polytypism of SiC and III - V Nitrides,” J. Phys.: Condens. Matter, vol. 9, pp. 2745-2758, 1997.
    [32] A. M. Kurakin, S. A. Vitusevich, S. V. Danylyuk, H. Hardtdegen, N. Klein, Z. Bougrioua, A. V. Naumov, and A. E. Belyaev, “Quantum Confinement Effect on The Effective Mass in Two-Dimensional Electron Gas of AlGaN/GaN Heterostructures,” J. Appl. Phys., vol. 105, no.7, pp. 073703-1 - 073703-6, Apr. 2009.
    [33] E. T. Yu, X. Z. Dang, P. M. Asbeck, and S. S. Lau, “Spontaneous and Piezoelectric Polarization Effects in III–V Nitride Heterostructures,” J. Vac. Sci. Technol. B, vol. 17, no. 4, pp. 1742-1749, May 1999.
    [34] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger and J. Hilsenbeck, “Two-Dimensional Electron Gases Induced by Spontaneous and Piezoelectric Polarization Charges in N- and Ga-Face AlGaN/GaN Heterostructures,” J. Appl. Phys., vol. 85, no. 6, pp. 3222-3233, Mar.1999.
    [35] J. H. Edgar, Properties of Group III Nitrides. London:INSPEC, 1994.
    [36] F. Bernardini, V. Fiorentini, and D. Vanderbilt, “Spontaneous Polarization and Piezoelectric Constants of III-V Nitrides,” Phys. Rev. B, vol. 56, no. 16, pp. R10024-R10027, Oct. 1997.
    [37] W. Q. Chen and S. K.Hark, “Strain-Induced Effects in (111)-Oriented InAsP/InP, InGaAs/InAlAs Quantum Wells on InP Substrates,” J. Appl. Phys., vol. 77, no.11, pp. 5747-5749, Feb. 1995.
    [38] P. M. Asbeck, E. T. Yu, S. S. Lau, G. J. Sullivan, J. Van Hove, and J. M. Redwing, “Piezoelectric Charge Densities in AlGaN/GaN HFETs,” Electron. Lett. , vol. 33, no.14, pp. 1230-1231, Jul. 1997.
    [39] E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, “Measurement of Piezoelectrically Induced Charge in GaN/AlGaN Heterostructure Field-Effect Transistors,” Appl. Phys. Lett., vol. 71, no. 19, pp. 2794-2796, Sep. 1997.
    [40] W. Liu, Fundamentals of III–V Devices—HBTs, MESFETs, and HFETs/HEMTs. Hoboken, NJ: Wiley, 1999, pp. 330-336.
    [41] E. J. Miller, X. Z. Dang and E. T. Yu, “Gate Leakage Current Mechanisms in AlGaN/GaN Heterostructure Field-Effect Transistors,” J. Appl. Phys., vol. 88, no. 10, pp. 5951-5958, Nov. 2000.
    [42] R. M. Chu, C. S. Suh, M. H. Wong, N. Fichtenbaum, D. Brown, L. McCarthy, S. Keller, F. Wu, J. S. Speck, and U. K. Mishra, “Impact of CF4 Plasma Treatment on GaN,” IEEE Electron Device Lett., vol. 28, no. 9, pp. 781-783, Apr. 2007.
    [43] R. Chu, L. Shen, N. Fichtenbaum, D. Brown, S. Keller, and U. K. Mishra, “Plasma Treatment for Leakage Reduction in AlGaN/GaN and GaN Schottky Contacts,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 297-299, Apr. 2008.
    [44] J. W. Chung, J. C. Roberts, E. L. Piner, and T. Palacios, “Effect of Gate Leakage in the Subthreshold Characteristics of AlGaN/GaN HEMTs,” IEEE Electron Device Lett., vol. 29, no. 11, pp. 1196-1198, Nov. 2008.
    [45] T. Nakao, Y. Ohno, S. Kishimoto, K. Maezawa, and T. Mizutani, “Study on Off-State Breakdown in AlGaN/GaN HEMTs,” Phys. Stat. Sol. (C), vol. 0, no. 7, pp. 2335-2338, Dec. 2003.
    [46] M. Chun, M.-J. Moon, J. Park, and Y.-C. Kang, “Physical and Chemical Investigation of Substrate Temperature Dependence of Zirconium Oxide Films on Si(100),” Bull. Korean Chem. Soc., vol. 30, no. 11, pp. 2729-2734, 2009.
    [47] H. M. Naguib and R. Kelly, “The Crystallization of Amorphous ZrO2 by Thermal Heating and by Ion Bombardment,” J. Nucl. Mater., vol. 35, pp. 293-305, 1970.
    [48] C. C. Hu, M. S. Lin, T. Y. Wu, F. Adriyanto, P. W. Sze, C. L. Wu, and Y. H. Wang, “AlGaN/GaN Metal-Oxide-Semiconductor High-Electron Mobility Transistor with Liquid-Phase-Deposited Barium-Doped TiO2 as a Gate Dielectric,” IEEE Trans. Electron Devices, vol. 59, no. 1, pp. 121-127, Jan. 2012.
    [49] Y. Wang, M. Wang, B. Xie, C. P. Wen, J. Wang, Y. Hao, W. Wu, K. J. Chen, and B. Shen, “High-Performance Normally-Off Al2O3/GaN MOSFET Using a Wet Etching-Based Gate Recess Technique,” IEEE Electron Device Lett., vol. 34, no. 11, pp. 1370-1372, Nov. 2013.
    [50] S. Balandin, V. Morozov, S. Cai, R. Li, K. L. Wang, G. Wijeratne and C. R. Viswanathan, “Low Flicker-Noise GaN/AlGaN Heterostructure Field-Effect Transistors for Microwave Communications,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 8, pp. 1413-1417, Aug. 1999
    [51] R. Vetury, Member, N. Q. Zhang, S. Keller, and U. K. Mishra, “The Impact of Surface States on the DC and RF Characteristics of AlGaN/GaN HFETs,” IEEE Trans. Electron Devices, vol. 48, no. 3, pp. 560-566, Mar. 2001.
    [52] B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, “The Effect of Surface Passivation on the Microwave Characteristics of Undoped AlGaN/GaN HEMT’s,” IEEE Electron Device Lett., vol. 21, no. 6, pp. 268-270, Jun. 2000.
    [53] C. Y. Tsai, T. L. Wu, and A. Chin, “High-Performance GaN MOSFET With High-κ LaAlO3/SiO2 Gate Dielectric,” IEEE Electron Device Lett., vol. 33, no. 1, pp. 35-37, Jan. 2012.
    [54] K. S. Im, J. B. Ha, K. W. Kim, J. S. Lee, D. S. Kim, S. H. Hahm, and J. H. Lee, “Normally Off GaN MOSFET Based on AlGaN/GaN Heterostructure With Extremely High 2DEG Density Grown on Silicon Substrate,” IEEE Electron Device Lett., vol. 31, no. 3, pp. 192-194, Mar. 2010.
    [55] Y. Cai, Z. Cheng, W. C. W. Tang, K. M. Lau, and K. J. Chen, “Monolithically Integrated Enhancement/Depletion-Mode AlGaN/GaN HEMT Inverters and Ring Oscillators Using CF4 Plasma Treatment,” IEEE Trans. Electron Devices, vol. 53, no. 9, pp. 2223-2230, Sep. 2006.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE