簡易檢索 / 詳目顯示

研究生: 許家瑋
Hsu, Chia-Wei
論文名稱: 磁電彈材料之熱效應邊界元素設計
Boundary Element Method for Magneto-Electro-Elastic Materials under Thermal Loading
指導教授: 胡潛濱
Hwu, Chyan-Bin
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 80
中文關鍵詞: 磁電彈材料熱效應邊界元素法史蹉公式
外文關鍵詞: Magneto-Electro-Elastic materials, Boundary Element Method, Stroh Formalism, Thermal Stress
相關次數: 點閱:153下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要討論磁電彈材料的三維和二維材料組成律,當有熱效應時,磁電彈材料的基本方程式,以及使用邊界元素法計算磁電彈材料之二維受熱問題。首先從彈性材料之受熱問題設計邊界元素法著手,之後再藉由史磋公式的便利性,將彈性材料利用矩陣維度的擴張,將其擴充為磁電彈材料,並編寫至師門程式AEPH中,平板因熱效應而產生的應力、應變以及電與磁之變化,主要關注在平板內材料不連續和容易發生疲勞或破壞的地方,目前可處理的問題有孔洞、裂縫等問題。
    之後藉由編寫在師門軟體AEPH中的解析解以及商業軟體ANSYS來進行比較,驗證本文的正確性。

    This paper discusses the design of BEM for two dimensional magneto-electro-elastic materials under thermal loading. First, we design the codes of Boundary Element Method for two dimensional elastic materials under thermal loading. And then we use the convenience of Stroh formalism to extend the dimension of matrices to complete the solution of the problems of thermo-elasticity for two dimensional magneto-electro-elastic materials. We extend the computer program of our research group AEPH. Furthermore, in order to be sure that the results are correct, the results of Boundary Element Method of AEPH are compared with the ones of analytical solution of AEPH and commercial finite element software ANSYS.

    摘要 --------------------------------------------------------------I Abstract ---------------------------------------------------------II 致謝 -----------------------------------------------------------VIII 目錄 -------------------------------------------------------------IX 表目錄 -----------------------------------------------------------XI 圖目錄 ----------------------------------------------------------XII 符號說明 -------------------------------------------------------XVI 第一章 緒論 -------------------------------------------------------1 1.1 研究動機與目的 ---------------------------------------------1 1.2 文獻回顧 ---------------------------------------------------1 1.3 本文架構 ---------------------------------------------------2 第二章 磁電彈材料 -------------------------------------------------3 2.1 三維材料組成律 --------------------------------------------3 2.2 二維材料組成律 --------------------------------------------6 2.3 熱效應 ---------------------------------------------------10 第三章 熱應力分析 ------------------------------------------------15 3.1 基本方程式 -----------------------------------------------15 3.2 邊界積分方程式 -------------------------------------------16 3.3 熱效應的基本解 -------------------------------------------18 第四章 數值結果與討論 --------------------------------------------21 4.1 磁電彈材料之三維狀態 -------------------------------------21 4.2 磁電彈材料之二維狀態 -------------------------------------25 4.3 積分型式之差異 -------------------------------------------29 4.4 計算方法之差異 -------------------------------------------33 4.5解析解的相關問題 ------------------------------------------42 4.6 收斂分析 -------------------------------------------------45 4.7 ANSYS與AEPH的差異 ------------------------------------51 4.8焦電係數與焦磁係數 ----------------------------------------53 第五章 結論 ------------------------------------------------------75 參考文獻 ---------------------------------------------------------76 附錄 -------------------------------------------------------------79

    [1] Green, A., “A note on stress systems in aeolotropic materials,” Philosophical
    Magazine, Vol. 34, pp. 416-418, 1943.
    [2] Suchtelen, J., “Product Properties: A New Application of Composite Materials,”
    Philips Research Reports, Vol.27, No.1, pp.28-37, 1972
    [3] Vinyas, M. and Kattimani, S.C., “Static studies stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads,” Composite Structures, Vol. 163, pp.216-237, 2017
    [4] Hwu, C., “Some explicit expressions of extended Stroh formalism for two-
    dimensional piezoelectric anisotropic elasticity,” International Journal of Solids
    and Structures, Vol. 45, Issue 16, pp. 4460-4473, 2008
    [5] 張玉虹, “磁電彈材料邊界元素設計,” , 國立功大學航太工程研究所,2011
    [6] 周志豪, “ 磁電彈材料之熱應力分析,” , 國立功大學航太工程研究所,2013
    [7] Gao, C. and Noda, N., “Thermal-induced interfacial cracking of
    magnetoelectroelastic materials,” International Journal of Engineering Science,
    Vol.42, pp.1347-1360, 2004
    [8] Qin, Q., “2D Green’s functions of defective magnetoelectroelastic solids under
    thermal loading,” Engineering Analysis with Boundary Elements, Vol.29, pp.577-
    583, 2005
    [9] Hwu, C., “Anisotropic Elastic Plates,” Springer, New York, 2010
    [10] Deb, A., Henry, D.P. and Wilson, R.B., “Alternate BEM Formulations for 2- and 3-D Anisotropic Thermoelasticity,” Int. J. Solids Structures, Vol. 27, Issue 13, pp.1721-1738, 1991
    [11] Nowak, A.J. and Brebbia, C.A., “The multiple-reciprocity method. A new approach for transforming BEM domain integrals to the boundary,” Engineering Analysis with Boundary Elements, Vol. 6, Issue 3, pp.164-167, 1989
    [12] Deb, A., and Banerjee, P.K., “BEM for General Anisotropic 2D Elasticity Using Particular Integrals,” Communications in Applied Numerical Method, Vol. 6, Issue 2, pp.111-119, 1990
    [13] Shiah, Y.C. and Tan, C.L., “Exact boundary integral transformation of the thermoelastic domain integral in BEM for general 2D anisotrpic elasticity,” Computational Mechanics, Vol. 23, Issue 1, pp.87-96, 1999
    [14] Shiah, Y.C. and Tan, C.L., “Fracture Mechanics Analysis in 2-D Anisotropic Thermoelasticity Using BEM,” Computer Modeling in Engineering and Sciences, Vol. 1, Issue 3, pp.91-99, 2000
    [15] Li, X.Y., Dong, Y.H., Liu, C., Liu, Y., Wang, C.J. and Shi, T.F., “Axisymmetric thermos-magneto-electro-elastic field in a heterogeneous circular plate subjected to a uniform thermal load,’’ International Journal of Mechanics Sciences, Vol. 88, pp.71-81, 2014
    [16] Shiah, Y.C., Hsu, C.L. and Hwu, C., “Direct Volume-to-Surface Integral Transformation for 2D BEM Analysis of Anisotropic Thermoelasticity,” Computer Modeling in Engineering & Sciences, Vol.102, No.4, pp.257-270, 2014
    [17] Hwu, C. et al. “Real form fundamental solution for anisotropic thermoelasticity,” under preparation.
    [18] Soh, A. and Liu, J., “On the Constitutive Equations of Magnetoelectroelastic
    Solids,” Journal of Intelligent Material Systems and Structures, Vol.16, pp.597-
    602, 2005
    [19] Gao, C., Kessler, H. and Balke, H., “Fracture Analysis of Electromagnetic
    Thermoelastic solids,” European Journal of Mechanics A/Solids, Vol.22, pp.433-
    442, 2003
    [20] Hsieh, M. and Hwu, C., “Extended Stroh-Like Formalism for Magneto-Electro-
    Elastic Composite Laminates,” International Conference on Computational
    Mesomechanics associated with Development and Fabrication of Use-Specific
    Materials, Tokyo, Japan, pp.325-332, 2003

    [21] Hwu, C, Hsu, C.L. and Chen, W.R., “Corrective Evaluation of Multi-valued Complex Functions for Anisotropic Elasticity,” under preparation.
    [22] Sladek, J., Sladek, V., Solek, P. and Zhang, Ch., “Fracture analysis in continuouslynonhomogeneous magneto-electro-elastic solids under a thermal load by the MLPG,” International Journal of Solids and Structures, Vol. 47, Issue 10, pp. 1381–1391, 2010
    [23] Pasternak, I., Pasternak, R., Pasternak, V. and Sulym, H., “Boundary element analysis of 3D cracks in anisotropic thermomagnetoelectroelastic solids,” Engineering Analysis with Boundary Elements, Vol.74, pp.70-78, 2017

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE