| 研究生: |
陳衍銘 Chen, Yen-Ming |
|---|---|
| 論文名稱: |
結合壓電平台與干涉儀建立奈米層級雷射鑷作業系統 Establishment of Nano-Scale Laser Tweezers System by Integrating a Piezo-Stage and Interferometer |
| 指導教授: |
蘇芳慶
Su, Fong-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 英文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 奈米 、壓電平台 、干涉儀 、雷射鎳 |
| 外文關鍵詞: | piezo-stage, nanometer, interferometer, laser tweezers |
| 相關次數: | 點閱:97 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此研究是經由結合壓電驅動平台與干涉儀將既有之雷射鎳作業系統的操作規格提升至nano層級。雷射鎳是現今各領域中極為有用的實驗器具,它乃是經由光動量守衡原理來拑取微小物體來進行實驗,故其拑取力量的量測與精準定位對一個細胞層級的實驗進行是非常重要的。現今細胞生物實驗已到達分子層級的地步,以膠原蛋白為例,其幅度約莫在數十至數百奈米之間,故將系統提升至奈米等級是即為需要的。為了使系統有奈米(nanometer)等級的位移量與量測的表現,我們在原系統機械驅動移動平台與倒立式顯微鏡上架設了壓電平台與干涉儀。壓電平台是利用PZT這線性的壓電材料特性所製造的精準移動平台,可用於奈米等級的定位上。至於干涉儀是用於偵測物體在雷射光焦點附近的微小位移,其架構是由許多鏡片組成。經由計算干涉現象所引發的光電壓改變,即可獲得微小位移與接收訊號的關係曲線。此曲線斜率可提供即時的物息改變監控。此外,藉由干涉儀與壓電平台結合,可以做出雷射鎳其拑滯力的量測。
在軟體方面,我們利用了LabVIEW這套軟體來編輯出適合的人機介面,這包含了壓電平台的驅動介面、位置的校準執行、兩種雷射鎳力量計算的校準執行。此介面可使複雜的校準行為便的更為簡單,同時簡易的操作介面可使實驗的進行更為簡便省時。另一方面其有別於市售雷射鎳作業系統開放程式碼,將使的整個系統有成長進步的空間。
總言之,經由干涉儀與壓電平台的結合運用,此套系統可提供pico Newton層級力量與nanometer層級位移的量測,並有兩種校力量準模式可供選擇且簡易進行。因此,此套nano層級為處理系統可活用於各種領域的微操作實驗。
In this study, a nano-scale detection and movement system integrating with the optical tweezers system was developed. Laser tweezers are a useful tool to manipulate small particles in molecular biology, biophysics, material science, chemical, mechanical and biomedical engineering fields. Therefore, the precise positioning and force detection are of much importance while experimenting. To achieve nanometer manipulation and measurement, a piezo-stage and an interferometer were adopted and mounted on the laser-tweezers-microscope system. The piezo-stage is a PZT actuated linear nanopositioning stage which was mounted on a micrometer-resolution motorized stage. The interferometer that composed of several lens was a sensor for catching slight movement of particle while laser tweezers works on it. Components of interferometer were mounted on the microscope, and a pair of detectors was set to receive the voltage caused by photon of laser. As a small particle was trapped by laser tweezers and performed a tiny movement, the data of voltage change would be detected and calculated to derive the nanometer displacement of the particle from laser focus. In other words, piezo-stage can provide the nanometer-motion, and interferometer can detect the nanometer-displacement. Furthermore, two kinds of trapping force calibration were introduced, and enabled our laser tweezers system detecting the real time trapping force in Pico Newton scale. The useful software Labview was adopted to design a virtual instrument to handle this mounted system and to simplify the process of trapping force calibration. Finally, a micromechanical system including the laser tweezers system, nanometer-scaled positioning and detecting technique was established with real time pico-Newton force and position detection, and this micromanipulation system can be well applied in many fields.
References
1.Ashkin A. Acceleration and trapping of particles by radiation pressure. Phys Rev Lett. 24: 156-159. 1970.
2.Ashkin, J.M. Dziedzic, J.E. Bjorkholm, and S. Chu. Observation of a single beam gradient trap for dielectric particles. Optics Letters. 11: 288-290. 1986.
3.Block SM, Blair DF, Berg HC. Compliance of bacterial flagella measured with optical tweezers. Nature. 338: 514-518. 1989.
4.Block SM: Optical tweezers: A new tool for biophysics. In “Non-invasive Techniques in Cell Biology” (JK Foskett and S Grinstein, ed.), 375-402. New York: John Wiley & Sons.
5.Chia-Ching Wu. ”Investigation of Cell Mechanotransduction by Nano-Optic Biotechnologies”. Diss. NCKU Taiwan. 2005.
6.Denk W and Webb WW. Optical measurement of picometer displacements of transparent microscopic objects. Appl Optics. 29: 2382-2390. 1990.
7.Drazen Raucher, Michael P. Sheetz. Cell spreading and lamellipodial extension rate is regulated by membrane tension. Journal of Cell Biology. 148: 127-136. 2000.
8.Erik Fällma, Staffan Schedin1, Jana Jass, Magnus Andersson, Bernt Eric Uhlin, Ove Axner. Optical tweezers based force measurement system for quantitating binding interactions: system design and application for the study of bacterial adhesion. Biosensors and Bioelectronics. 19: 1429-1437. 2004.
9.Ghislain, Lucien.P., Switz, N. A. Measurement of small forces using an optical trap. Rev. Sci. Instr. 65: 2762-2768. 1994.
10.Igor Titushkin, Michael Cho. Distinct membrane mechanical properties of human mesenchymal stem cell determined using laser optical tweezers. Has been accepted by Biophysical January. 2006.
11.J. Bereiter-Hahn. Mechanics of crawling cells. Medical Engineering &Physics 27 : 743–753. 2005.
12.J. M. Colon, P. G. Sarosi, P. G. McGovern, A. Ashkin, J. M. Dziedzic.Controlled micromanipulation of human sperm in three dimensions with an infrared laser optical trap: effect of sperm velocity. Fertil. Steril. 57: 695-698. 1992.
13.K.J. Van Vliet, G. Bao, S. Suresh. The biomechanics toolbox: experimental approaches for living cells and biomolecules. Acta Materialia. 51: 5881–5905. 2003.
14.K. Svoboda, S. M. Block. Biological application of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23: 248. 1994.
15.Kathryn Hicks Simpson, BS, M. Gabriela Bowden, Magnus Hook, Bahman Anvari. Measurement of adhesive forces between S. epidermidis and fibronectin-coated surfaces using optical tweezers. Surgery and Medicine. 31: 45-52. 2002.
16.Kuo, Scot. C., Sheetz, Micheal P. Force of single kinesin molecules measured with optical tweezers. Science. 260: 232-234. 1993.
17.Li, Z., B. Anvari, M. Takashima, P. Brecht, J. H. Torres, W. E. Brownell. Membrane tether formation from outer hair cells with optical tweezers. Biophys J. 82(3): 1386-95. 2002.
18.Luo. Z.P., K.N. An. Development and validation of a nanometer manipulation and measurement system for biomechanical testing of single macro-molecules. J Biomech. 31: 1075-9. 1998.
19.Luo. Z.P., M.E. Bolander, K.N. An. A method for determination of stiffness of collagen molecules. Biochem Biophys Res Commun. 232:251-4. 1997.
20.Mark C. Williams. Optical Tweezers: Measuring Piconewton Forces. Text. Department of physics and center for interdisciplinary research on complex systems.
21.Miriam W. Allersma, Frederick Gittes, Michael J. deCastro, Russell J. Stewart, Christoph F. Schmidt. Two-dimensional tracking of ncd motility by back focal plane. Interferometry Biophysical Journal. 74: 1074-1085. 1998.
22.Paul Lloyd Larsen. “LASER TWEEZERS”. Diss.Williamsburg, College of William and Mary Virginia. April 1999.
23.S. Chu. Laser manipulation of atoms and particles. Science. 252: 861-866. 1991.
24.Sako Y, Kusumi A. Barriers for lateral diffusion of transferrin receptor in the plasma membrane as characterized by receptor dragging by laser tweezers: Fence versus tether. J Cell Biol. 129: 1559-1574. 1995.
25.Sergey A. Ermilova, David R. Murdocka, Feng Qiana, William E. Brownellb, Bahman Anvaria. Studies of plasma membrane mechanics and plasma membrane-cytoskeleton interactions using optical tweezers and fluorescence imaging. Journal of Biomechanics.(In Press). 2005.
26.Sheetz, M. P. Laser tweezers in cell biology. Methods Cell Biol. 55: 1-222. 1998.
27.Shyh-Tsong Lin. A laser interferometer for measuring straightness. Optics & Laser Technology. 33: 195-199. 2001.
28.Simmons, R. M., Finer, J. T., Chu S., Spudish, J. A. Quantitative measurement of force and displacement using an optic trap Biophys. 70: 1813-1822. 1996.
29.Simon F. Toli´c-Nørrelykke, Mette B. Rasmussen, Francesco S. Pavone, Kirstine Berg-Sørensen, Lene B. Oddershede. Stepwise bending of DNA by a single TATA-box Binding Protein. Biophysical Journal. 90: 3694-3703. 2006
30.Smith, S. B., Y. J. Cui, C. Bustamante. Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules. Science. 271: 795-799. 1996.
31.Sylvie He’non, Guillaume Lenormand, Alain Richert, Franc¸ ois Gallet.A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophysical Journal. 76: 1145–1151. 1999.
32.Tadashi Fujiia, Yu-Long Sun, Kai-Nan An, Zong-Ping Luo. Mechanical properties of single hyaluronan molecules. Journal of Biomechanics 35: 527–531. 2002.
33.U. Bockelmann, Ph. Thomen, B. Essevaz-Roulet, V. Viasnoff, F. Heslot. Unzipping DNA with optical tweezers: High sequence sensitivity and force flips. Biophysical. 82: 1537–1553. 2002.
34.Weber G, Greulich KO. Manipulation of cells, organelles and genomes by laser microbeam and optical trap. Int Rev Cytol. 133: 1-41. 1992.
35.Yu-Long Sun, Zong-Ping Luo, Andrzej Fertala, Kai-Nan An. Direct quantification of the flexibility of type I collagen monomer. Biochemical and Biophysical Research Communications. 295: 382–386. 2002.
36.Yu-Long Sun, Zong-Ping Luo, Andrzej Fertala, Kai-Nan An. A Stretching type II collagen with optical tweezers.Journal of Biomechanics. 37: 1665–1669. 2004.
37.Zhiwei L., Bahman A., Membrane tether formation from outer hair cells with optical tweezers. Biophys J. 82: 1386–1395. 2002.