| 研究生: |
蔣君華 Chiang, Jun-Hua |
|---|---|
| 論文名稱: |
應用於再生能源系統之新數位式非線性功率因數修正與混合訊號最大功率追蹤控制器 New Digital Nonlinear-Carrier Power Factor Correction and Mixed-Signal Maximum Power Point Tracking Controllers for Renewable Power System Applications |
| 指導教授: |
劉濱達
Liu, Bin-Da 楊宏澤 Yang, Hong-Tzer |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 英文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 數位控制 、非線性功率因數修正 、功率因數修正 、最大功率追蹤 、太陽能系統 |
| 外文關鍵詞: | digital control, nonlinear-carrier control, power factor correction, maximum power point trackers, photovoltaic power system |
| 相關次數: | 點閱:161 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出兩種分別應用於小型風力發電系統之新主動式數位功率因數修正控制器與應用於微型太陽能系統之最大功率追蹤控制器。
常見的小型風力發電機為一組三相式交流轉直流之能量轉換系統,對於交流轉直流之能量系統而言,主動式功率因數修正器為不可或缺的重要角色。傳統之主動式功率因數修正控制法需感測轉換器輸入端之交流電位訊號,並藉由乘法器產生功率修正所需之參考訊號。然而,此傳統之主動式功率因數控制法增加了硬體實現複雜度,尤其對於數位控制晶片而言,更需要大量的數位邏輯閘。本文提出一種具斜率變化之斜坡訊號產生器以實現非線性主動式功率因數修正,除了達到高功率因數與降低諧波失真率,亦能減低數位硬體實現之複雜度。測試平台分別為400瓦之單相主動式昇壓整流器與1,100瓦之小型風力發電系統。
微型太陽能系統控制分為數位與類比兩大類,數位控制能藉由可程式化實現最大功率追蹤;然而,其需使用多顆高解析度之類比數位轉換器,而類比控制雖具簡單之硬體實現優勢,卻難以在低電壓(5伏)範圍下達到廣泛的線性度。本文提出了混合訊號乘法器之最大功率追蹤控制器,此控制器結合了類比與數位控制之特性,除了能在低電壓範圍下達到高線性度外,亦能以全客戶式積體電路設計實現。此控制器以台灣積體電路公司高壓25微米1層多晶矽2層金屬線製程設計,藉由模擬結果得知控制器除了能在低電壓範圍下達到高範圍之線性度,亦能實現最大功率追蹤功能。量測平台為200瓦之微型太陽能功率系統。
A new power factor correction (PFC) application and implementation for a small wind power system and a mixed-signal maximum power point tracking (MPPT) integrated circuit (IC) controller for a micro photovoltaic (PV) power system are proposed in this dissertation.
An algorithm for implementing the nonlinear-carrier (NLC) control method for a single-phase PFC rectifier without an input voltage sensing circuit, an error amplifier in the current shaping loop, or other external control components. Unity power factor and low harmonic distortion are achieved by adopting NLC control with a variable slope ramp. This ramp is created through a slope comparison without any dividers. The proposed method not only achieves a high power factor, but also efficiently simplifies the complexity of IC realization. A single-phase boost rectifier and a small wind power system are implemented to verify the performance of the proposed PFC control. The test platforms are 400 W single-phase boost rectifier and 1100 W small wind power system respectively.
A mixed-signal MPPT IC controller implemented with a mixed-signal multiplier is applied for a PV power system. The mixed-signal MPPT IC controller, which can be easily implemented on a low-cost single-chip IC, is based on the perturbation and observation method. The mixed-signal multiplier combines features of analog control with digital control. Compared with digital MPPT controllers, up to 10-bit high resolution analog to digital converters are significantly reduced to simplify the hardware complexity of the IC realization. Compared with analog MPPT controllers, which have a narrow linearity range of low supply voltage, the proposed controller has high linearity range of low supply voltage and precise calculations for MPPT to extend the input voltage control range of the PV power system. The measurement results include single chip test and a 200 W PV power system.
[1] S. M. R. Kazmi, H. Goto, H. J. Guo, and O. Ichinokura, “A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems,” IEEE Trans. Ind. Electron, vol. 58, no. 1, pp. 29−36, Jan. 2011.
[2] C. T. Pan, and Y. L. Juan, “A novel sensorless MPPT controller for a high-efficiency microscale wind power generation system,” IEEE Trans. Energy Convers., vol. 25, no. 1, pp. 207−216, Mar. 2010.
[3] E. Koutroulis and K. Kalaitzakis, “Design of a maximum power tracking system for wind-energy-conversion applications,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 468−494, Apr. 2006.
[4] M. Pucci and M. Cirrincione, “Neural MPPT control of wind generators with induction machines without speed sensors,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 37−47, Jan. 2011.
[5] C. H. Liu, K. T. Chau, and X. D. Zhang, “An efficient wind–photovoltaic hybrid generation system using doubly excited permanent-magnet brushless machine,” IEEE Trans. Ind. Electron., vol. 57, no. 3, pp. 831−839, Mar. 2009.
[6] A. Mirecki, X. Roboam, and F. Richardeau, “Architecture complexity and energy efficiency of small wind turbines,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 660−670, Feb. 2007.
[7] J. Chen, J. Chen, and C. Gong, “On optimizing the aerodynamic load acting on the turbine shaft of pmsg-based direct-drive wind energy conversion system” IEEE Trans. Ind. Electron., vol. 61, no. 8, pp. 4022−4031, Aug. 2014.
[8] K. Nishida, T. Ahmed, and M. Nakaoka, “A cost-effective high-efficiency power conditioner with simple MPPT control algorithm for wind-power grid integration,” IEEE Trans. Power Electron., vol. 17, no. 2, pp. 893−900, Mar./Apr. 2011.
[9] C. E. A. Silva, R. T. Bascope, D. S. Oliveira, “Three-phase power factor correction rectifier applied to wind energy conversion systems”, in Proc. IEEE Applied Power Electronics Conf., pp. 768–773, 2008.
[10] IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE Standard 519–1992, 1993.
[11] G. Gamboa, J. Elmes, C. Hamilton, J. Baker, M. Pepper, and I. Batarseh, “A unity power factor, maximum power point tracking battery charger for low power wind turbines”, in Proc. IEEE Applied Power Electronics Conf., pp. 143–148, 2010.
[12] A. Sanchez, A. de Castro, and J. Garrido, “A comparison of simulation and hardware-in-the-loop alternatives for digital control of power converters,” IEEE Trans. Ind. Inf., vol. 8, no. 3, pp. 491–500, Aug. 2012.
[13] C. Cecati, A. Dell’Aquila, M. Liserre, and A. Ometto, “A fuzzy-logicbased controller for active rectifier,” IEEE Trans. Ind. Appl., vol. 39, no. 1, pp. 105–112, Jan./Feb. 2003.
[14] C. Cecati, A. Dell’Aquila, A. Lecci, and M. Liserre, “A fuzzy-logicbased controller for active rectifier,” IEEE Trans. Ind. Appl., vol. 52, no. 2, pp. 378–385, Apr. 2005.
[15] M. Salo and H. Tuusa, “A vector controlled current-source PWM rectifier with a novel current damping method”, IEEE Trans. Power Electron., vol. 15, no. 3, pp. 465−470, May. 2000.
[16] I. Barbi and F. A. B. Batista, “Space vector modulation for two-level unidirectional PWM rectifiers”, IEEE Trans. Power Electron., vol. 25, no. 1, pp. 178−187, Jan. 2010.
[17] R. Burgos, R. Lai, Y. Pei, F. Wang, D. Boroyevich, and J. Pou, “Space vector modulator for vienna-type rectifiers based on the equivalence between two- and three-level converters: a carrier-based implementation”, IEEE Trans. Power Electron., vol. 23, no. 4, pp. 1888−1898, Jul. 2008.
[18] D. Maksimović, Y. Jang, and R. W. Erickson, “Nonlinear-carrier control for high-power-factor boost rectifiers,” IEEE Trans. Power Electron., vol. 11, no. 4, pp. 578–584, Jul. 1996.
[19] Z. Lai and K. M. Smedley, “A family of continuous-conduction-mode power-factor-correction controllers based on the general pulse-width modulator,” IEEE Trans. Power Electron., vol. 13, no. 3, pp. 501–510, May. 1998.
[20] J. P. Gegner and C. Q. Lee, “Linear peak current mode control: a simple active power factor correction control technique for continuous conduction mode,” in Proc. IEEE Power Electronics Specialist Conf., Jun. 1996, pp. 196–202.
[21] D. Maksimović, Y. Jang, and R. W. Erickson, “The voltage-controlled compensation ramp: A waveshaping technique for power factor correctors,” IEEE Trans. Ind. Appl., vol. 45, no. 3, pp. 1016–1027, May./Jul. 2009.
[22] W. Stefanutti, P. Mattavelli, G. Spiazzi, and P. Tenti, “Digital control of single-phase power factor preregulators based on current and voltage sensing at switch terminals,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1356–1363, Sept. 2006.
[23] P. Mattavelli, G. Spiazzi, and P. Tenti, “Predictive digital control of power factor preregulators with input voltage estimation using disturbance observers,” IEEE Trans. Power Electron., vol. 20, no. 1, pp. 140–147, Jan. 2005.
[24] B. A. Mather and D. Maksimović, “A simple digital power-factor correction rectifier controller,” IEEE Trans. Power Electron., vol. 26, no. 1, pp. 9–19, Jan. 2011.
[25] C. C. Hua and J. R. Lin, “Fully digital control of distributed photovoltaic power systems,” in Proc. IEEE Int. Symp. Ind. Electron., Jun. 2001, pp. 1–6.
[26] S. Jain and V. Agarwal, “A new algorithm for rapid tracking of approximate maximum power point in photovoltaic systems,” IEEE Power Electron. Lett., vol. 2, no. 1, pp. 16–19, Mar. 2004.
[27] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.
[28] N. Kasa, T. Iida, and L. Chen, “Flyback inverter controlled by sensorless current MPPT for photovoltaic power system,” IEEE Trans. Ind. Electron., vol. 52, no. 4, pp. 1145–1152, Aug. 2005.
[29] Y. Levron and D. Shmilovitz, “Maximum power point tracking employing sliding mode control,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 3, pp. 724–732, Mar. 2013.
[30] M. Mosal, H. A. Rub, M. E. Ahmed, and J. Rodriguez, “Modified MPPT with using model predictive control for multilevel boost converter,” in Proc. 38th Annu. Conf. IEEE Ind. Electron. Soc., Jun. 2012, pp. 5080–5085.
[31] T. Saini, D. Raveendhra, and P. Thakur, “Stability analysis of FPGA based perturb and observe method MPPT charge controller for solar PV system” in Proc. Students Conf. on Eng. and Syst., Apr. 2013, pp. 1–5.
[32] K. H. Hussein and I. Mota, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions,” in IEE Proc. Generation Transmiss. Distrib., vol. 142, no. 1, pp. 59–64, Jan. 1995.
[33] A. Brambilla, M. Gambarara, A. Garutti, and F. Ronchi, “New approach to photovoltaic arrays maximum power point tracking,” in Proc. 30th Annu. IEEE Power Electron. Spec. Conf., Jun./Jul. 1999, pp. 632–637.
[34] K. Irisawa, T. Saito, I. Takano, and Y. Sawada, “Maximum power point tracking control of photovoltaic generation system under non-uniform insolation by means of monitoring cells,” in Proc. Conf. Record Twenty-Eighth IEEE Photovoltaic Spec. Conf., Sept. 2000, pp. 1707–1710.
[35] Y. C. Kuo, T. J. Liang, and J. F. Chen, “Novel maximum-power-pointtracking controller for photovoltaic energy conversion system,” IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 594–601, Jun. 2001.
[36] G. J. Yu, Y. S. Jung, J. Y. Choi, I. Choy, J. H. Song, and G. S. Kim, “A novel two-mode MPPT control algorithm based on comparative study of existing algorithms,” in Proc. Conf. Record Twenty-Ninth IEEE Photovoltaic Spec. Conf., May. 2002, pp. 1531–1534.
[37] W. Wu, N. Pongratananukul, W. Qiu, K. Rustom, T. Kasparis, and I. Batarseh, “DSP-based multiple peak power tracking for expandable power system,” in Proc. 18th Annu. IEEE Appl. Power Electron. Conf. Expo., Feb. 2003, pp. 525–530.
[38] E. M. Ahmed and M, Shoyama, “Novel stability analysis of variable step size incremental resistance INR MPPT of PV systems,” in Proc. 37th Annu. Conf. IEEE Ind. Electron. Soc., Nov. 2011, pp. 3894–3899.
[39] N.E. Zakzouk, A.K. Abdelsalam, A. A. Helal, and B.W. Williams, “Modified variable-step incremental conductance maximum power point tracking technique for photovoltaic systems,” in Proc. 39th Annu. Conf. IEEE Ind. Electron. Soc., Jun. 2013, pp. 1741–1748.
[40] J. J. Schoeman and J. D. van Wyk, “A simplified maximal power controller for terrestrial photovoltaic panel arrays,” in Proc. 13th Annu. IEEE Power Electron. Spec. Conf., Jun. 1982, pp. 361–367.
[41] G. W. Hart, H. M. Branz, and C. H. Cox, “Experimental tests of open loop maximum-power-point tracking techniques,” Solar Cells, vol. 13, pp. 185–195, Dec. 1984.
[42] D. J. Patterson, “Electrical system design for a solar powered vehicle,” in Proc. 21st Annu. IEEE Power Electron. Spec. Conf., Jun. 1990, pp. 618–622.
[43] M. A. S. Masoum, H. Dehbonei, and E. F. Fuchs, “Theoretical and experimental analyses of photovoltaic systems with voltage and current-based maximum power-point tracking,” IEEE Trans. Energy Convers., vol. 17, no. 4, pp. 514–522, Dec. 2002.
[44] H. J. Noh, D. Y. Lee, and D. S. Hyun, “An improved MPPT converter with current compensation method for small scaled PV-applications,” in Proc. 28th Annu. Conf. Ind. Electron. Soc., Nov. 2002, pp. 1113–1118.
[45] A. Ahmed, L. Ran, S. Moon, and J. H. Park, “A fast PV power tracking control algorithm with reduced power mode,” IEEE Trans. Energy Convers., vol. 28, no. 3, pp. 565–575, Sept. 2013.
[46] Y. H. Ji, D. Y. Jung, J. G. Kim, J. H. Kim, T. W. Lee, and C. Y. Won, “A Real maximum power point tracking method for mismatching compensation in PV array under partially shaded conditions,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1001–1009, Apr. 2012.
[47] L. Zhou, Y. Chen, K. Guo, and F. C. Jia, “New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search,” IEEE Trans. Power Electron., vol. 26, no. 4, pp. 1038–1048, Apr. 2011.
[48] E. Bianconi, J. Calvente, R. Giral, E. Mamarelis, G. Petrone, C. A. Ramos-Paja, G. Spagnuolo, and M. Vitelli, “A fast current-based MPPT technique employing sliding mode control,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1168–1178, Mar. 2013.
[49] M. A. G. de Brito, L. Galotto, Jr., L. P. Sampaio, G. A. e Melo, and C. A. Canesin, “Evaluation of the main MPPT techniques for photovoltaic applications,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1156–1167, Mar. 2013.
[50] O. L. Lapeña, M. T. Penella, and M. Gasulla, “A closed-loop maximum power point tracker for subwatt photovoltaic panels,” IEEE Trans. Ind. Electron., vol. 59, no. 3, pp. 1588–1596, Mar. 2012.
[51] P. E. Kakosimos, A. G. Kladas, and S. N. Manias, “Fast photovoltaic-system voltage- or current-oriented MPPT employing a predictive digital current-controlled converter,” IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5673–5684, Dec. 2013.
[52] S. Stanzione, C. V. Liempd, R. V. Schaijk, Y. Naito, F. Yazicioglu, and C. V. Hoof, “A high voltage self-biased Integrated DC-DC buck converter with fully analog MPPT algorithm for electrostatic energy harvesters,” IEEE J. Solid-State Circuits, vol. 48, no. 12, pp. 3002–3010, Dec. 2013.
[53] J. Kim, J. Kim, and C. Kim, “A regulated charge pump with a low-power integrated optimum power point tracking algorithm for indoor solar energy harvesting,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 58, no. 12, pp. 802–806, Dec. 2011.
[54] H. Kim, S. Kim, C. K. Kwon, Y. J. Min, C. Kim, and S. W. Kim, “An energy-efficient fast maximum power point tracking circuit in an 800-μw photovoltaic energy harvester,” IEEE Trans. Power Electron., vol. 28, no. 6, pp. 2927–2935, Jun. 2013.
[55] H Kim, Y. J. Min, C. H. Jeong, K. Y. Kim, C. Kim, and S. W. Kim, “A 1-mW solar-energy-harvesting circuit using an adaptive MPPT with a SAR and a counter,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 6, pp. 331–335, Jun. 2013.
[56] Y. Qiu, C. Van Liempd, B. Op het Veld, P. G. Blanken, and C. Van Hoof, “5μW-to-10 mW input power range inductive boost converter for indoor photovoltaic energy harvesting with integrated maximum power point tracking algorithm,” in Proc. IEEE Int. Solid-State Circuits Conf., Dig. Tech. Papers, Feb. 2011, pp. 118–119.
[57] Z. Liang, R. Guo, and A. Huang, “A new cost-effective analog maximum power point tracker for PV systems,” in Proc. IEEE Energy Convers. Congr. Expo., Sept. 2010, pp. 624–631.
[58] T. Esram, J. W. Kimball, P. T. Krein, P. L. Chapman, and P. Midya, “Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control,” IEEE Trans. Power Electron., vol. 21, no. 5, pp. 1282–291, Sept. 2006.
[59] G. Spiazzi, S. Buso, P. Mattavelli, and P. Tenti, “Low complexity MPPT techniques for PV module converters,” in Proc. Int. Power Electronics Conf., Jun. 2010, pp. 2074–2081.
[60] R. Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-Salamero, “MPPT of photovoltaic systems using extremum—Seeking control,” IEEE Trans. Aerosp. Electron. Syst., vol. 42, no. 1, pp. 249–258, Jan. 2006.
[61] G. Spiazzi, and F. C. Lee, “Implementation of single-phase boost power-factor-correction circuits in three-phase applications,” IEEE Trans. Ind. Electron., vol. 44, no. 3, pp. 365−371, Jun. 1997.
[62] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, 2nd ed. New York: Springer, 2001.
[63] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed. Hoboken, NJ: John Willy & Sons, 2003, pp. 172−173.
[64] C. Zhou and M. Jovanovic, “Design tradeoffs in continuous current-mode controlled boost power factor correction circuits,” in Proc. High Frequency Power Conversion Conf., pp. 209−220, May 1992.
[65] R. Mammano and R. Neidorff, “Improving input power factor – a new active controller simplifies the task,” in Proc. Power Conversion, pp. 100−109, Oct. 1989.
[66] C. Zhou, R. Ridley, and F. C. Lee, “Design and analysis of a hysteretic boost power factor correction circuit,” in Proc. IEEE Power Electronics Specialists Conf., pp. 800−807, June 1990.
[67] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, “Maximum photovoltaic power tracking: An algorithm for rapidly changing atmospheric conditions,” IEE Proc. Gener. Transm. Distrib, vol. 142, no. 1, pp. 59–64, Jan. 1995.
[68] T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques,” IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439−449, Jun. 2007.
[69] J. Rajagopalan, J. G. Cho, B. H. Cho, and F. C. Lee, “High performance control of single-phase power factor correction circuits using a discrete time domain control method,” in Proc. IEEE Applied Power Electronics Conf., Mar. 1995, pp. 647–653.
[70] A. Prodic, D. Maksimović, and R. W. Erickson, “Dead-zone digital controller for improved dynamic response of power factor preregulators,” in Proc. IEEE Applied Power Electronics Conf., Feb. 2003, pp. 382–388.
[71] A. E. Aroudi, M. Orabi, R. Haroun, and L. Martínez-Salamero, “Asymptotic slow-scale stability boundary of PFC AC–DC power converters: theoretical prediction and experimental validation,” IEEE Trans. Ind. Electron., vol. 58, no. 8, pp. 3448–3460, Aug. 2011.
[72] J. Sebastián, D. G. Lamar, A. Rodríguez-Alonso, and M. A. P. de Azpeitia, “On the maximum bandwidth attainable by power factor correctors with a standard compensator” IEEE Trans. Ind. Appl., vol. 46, no. 4, pp. 1485–1497, Jul./Aug. 2010.
[73] R. Gregorian, Introduction to COMS OP-AMPS and Comparators. New York: John Willy & Sons, 1999.
[74] T. C. Carusone, D. Johns, and K. Martin, Analog Integrated Circuit Design. New York: John Willy & Sons, 2011, pp. 487–572.
[75] S. M. Kang and Y. Leblebici, CMOS Digital Integrated Circuits Analysis and Design, 3rd ed., New York: McGraw-Hill, 2005, pp. 348–349.
[76] K. Bult and G. Geelen, “A fast-settling CMOS Op Amp for SC circuits with 90-dB DC gain,” IEEE J. Solid-State Circuit, vol. 25, pp. 1379–1384, Jun. 1990.
[77] W. M. C. Sansen, Analog Design Essentials. Dordrecht, Netherlands: Springer, 2006, pp. 216−221.
[78] L. Sumanen, M. Waltari, and K. Halonen, “A mismatch in-sensitive CMOS dynamic comparators for pipelined A/D converter,” in Proc. IEEE Int. Conf. Electronics, Circuits Syst., Dec. 2000, pp. 32–35.
[79] M. P. Kennedy, “On the robustness of R-2R ladder DAC’s,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 47, no. 2, pp. 109–116, Feb. 2000.
[80] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed. New York: Oxford, 2002, pp. 269–274.
[81] H. C. Yang and D. J. Allstot, “Modified modeling of miller compensation for two-stage operational amplifiers,” in Proc. IEEE Int. Symp. Circuits Sys., Jun. 1991, pp 2557−2560.
[82] STMicroelectronics, SPV1020 Datasheet, Nov. 2010.
[83] X. Liu and L. A. C. Lopes, “An improved perturbation and observation maximum power point tracking algorithm for PV arrays,” in Proc. IEEE 35th Annu. Power Electron. Spec. Conf., Jun. 2004, pp. 2005–2010.
校內:2021-02-19公開