| 研究生: |
簡士雄 Chien, Shih-Hsiung |
|---|---|
| 論文名稱: |
低靜態電流低失真類比輸入與高動態範圍數位輸入D類音頻放大器 Low-Quiescent-Current Low-Distortion Analog-Input and High-Dynamic-Range Digital-Input Class-D Audio Amplifiers |
| 指導教授: |
郭泰豪
Kuo, Tai-Haur |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | D類音頻放大器 、靜態電流 、非線性失真 、混疊失真 、三角積分調變器 、穩定度 、低失真輸出功率 、直流直流轉換器 、音量控制 、動態範圍 、時脈抖動 |
| 外文關鍵詞: | Class-D audio amplifier, quiescent current, nonlinear distortion, aliasing distortion, delta-sigma modulator, stability, low-distortion output power, DC-DC converter, volume control, dynamic range, jitter |
| 相關次數: | 點閱:88 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文為針對低靜態電流低失真之類比輸入D類音頻放大器與高動態範圍且增加低失真輸出功率之數位輸入D類音頻放大器設計之研究。
在類比輸入D類音頻放大器設計中,為了延長電池使用時間並降低非線性失真,本論文分析傳統D類音頻放大器的靜態電流與非線性失真來源,以及一個前饋式脈寬調變殘值混疊抑制技術對於抑制失真的限制。此外,本論文提出一個零相位偏移技術來消除前饋式脈寬調變殘值混疊抑制技術的相位偏移延遲效應,藉此進一步地改善總諧波失真加雜訊達10dB。此技術使D類音頻放大器與現存最佳文獻相比,僅需消耗最低的靜態電流0.41mA,且FOM達2342.5亦為現存文獻最高。
在數位輸入D類音頻放大器設計中,高階三角積分調變器的穩定度問題限制了開迴路D類放大器的最大低失真輸出功率。本論文分別設計適應性係數三角積分調變器以及串聯式三角積分調變器,使調變器同時具有高解析的雜訊抑制能力以及全域穩定輸入範圍。與傳統調變器設計相比,將串聯式三角積分調變器應用在一個既定直流電源下,可以增加開迴路數位輸入D類音頻放大器的低失真輸出功率達40%。除了D類音頻放大器本身的設計外,本論文實現一個內建降壓/升壓型直流直流轉換器之數位輸入D類音頻放大器。此降壓/升壓型轉換器配合所提出的音量控制技術,除了將有限的電池電壓升高來提供音頻放大器輸出更大的功率外,亦可在音量調小時降低D類放大器之電源電壓,藉此抑制數位時脈抖動在小輸出功率時對放大器音質的影響。此外,藉由一個動態數位濾波器實現的等效移動平均亦進一步提升此音頻放大器的動態範圍,並減少頻帶外雜訊在揚聲器的功耗。
This dissertation focuses on the low-quiescent-current low-distortion analog-input Class-D audio amplifier and high-dynamic-range increased-low-distortion-output-power digital-input Class-D audio amplifier designs.
To design an analog-input Class-D audio amplifier for battery life extension and nonlinear distortion suppression, this dissertation analyzes the quiescent current and the distortion sources of Class-D audio amplifiers, and examines a feed-forward Pulse-width modulation (PWM)-Residual-Aliasing Reduction (PRAR) technique to discover the inherent limitation of the distortion suppression. Moreover, a Zero-Phase-Shift PRAR (ZPS-PRAR) is proposed to eliminate the phase-shift delay effect, resulting in a Class-D amplifier with the minimum THD+N improvement by 10dB compared with the PRAR technique. Compared with other state of the arts, the ZPS-PRAR Class-D amplifier achieves the lowest quiescent current of 0.41mA and the highest FOM of 2342.5.
In the digital-input Class-D audio amplifier design, the low-distortion output power is limited by the stability problem of the high-order delta-sigma modulator in the open-loop architecture. In this dissertation, an adaptive-coefficient delta-sigma modulator (ACDSM) and a series-connected delta-sigma modulator (SCDSM) are realized to simultaneously achieve a high in-band noise suppression and a full-scale stable input range. Compared with conventional delta-sigma modulator designs, the realized SCDSM increase the low-distortion output power of the Class-D amplifier by 40%. In addition, this dissertation realizes an embedded buck/boost DC-DC converter to meet the increasing output power demand of the modern audio amplifier applications. A supply-voltage-scaling volume control is proposed to determine the buck/boost converter not only to boost the supply voltage to deliver more output power for Class-D amplifiers, but also to lower the supply voltage according to the digital volume levels for jitter effect reduction at small volume levels. The equivalent moving average filtering is also realized with the supply-voltage-scaling volume control to further improve the dynamic range and reduce the speaker power loss caused by the out-of-band noise.
[1] J.-M. Liu, S.-H. Chien, and T.-H. Kuo, “A 100 W 5.1-Channel Digital Class-D Audio Amplifier with Single-Chip Design,” IEEE J. Solid-State Circuits, vol. 47, no. 6, pp. 1344-1354, June 2012.
[2] M. Berkhout, “An integrated 200-W Class-D audio amplifier,” IEEE J.Solid-State Circuits, vol. 38, no. 7, pp. 1198–1206, Jul. 2003.
[3] M. Wang, X. Jiang, J. Song, and T. L. Brooks, “A 120 dB dynamic range 400 mW Class-D speaker driver with fourth-order PWM modulator,” IEEE J. Solid-State Circuits, vol. 45, no. 8, pp. 1427–1435, Aug. 2010.
[4] I. D. Mosely et al., “Effect of dead time on harmonic distortion in Class-D audio amplifiers,” Electron. Lett., vol. 35, no. 12, pp. 950–952, June 1999.
[5] D. Schinkel et al., “A Multiphase Class-D Automotive Audio Amplifier With Integrated Low-Latency ADCs for Digitized Feedback After the Output Filter,” IEEE J. Solid-State Circuits, vol. 52, no. 12, pp. 3181-3193, Dec. 2017.
[6] W.-C. Wang and Y.-H. Lin, “A 118 dB PSRR, 0.00067% (−103.5 dB) THD+N and 3.1 W Fully Differential Class-D Audio Amplifier With PWM Common Mode Control,” IEEE J. Solid-State Circuits, vol. 51, no. 12, pp. 2808-2818, Dec. 2016.
[7] T.-H. Kuo, S.-H. Chien, J.-J. Huang, Y.-W. Chen, and Y.-A. Lee, “A 2.4 mA Quiescent Current, 1 W Output Power Class-D Audio Amplifier with Feed-Forward PWM-Intermodulated-Distortion Reduction,” IEEE J. Solid-State Circuits, vol. 51, no. 6, pp. 1436-1445, June 2016.
[8] L. Guo, T. Ge, and J. S. Chang, “A 101 dB PSRR, 0.0027% THD + N and 94% power-efficiency filterless Class D amplifier,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2608–2617, Nov. 2014.
[9] M. A. Teplechuk, T. Gribben, and C. Amadi, “True filterless Class-D audio amplifier,” IEEE J. Solid-State Circuits, vol. 46, no. 12, pp. 2784–2793,Dec. 2011.
[10] W. Shu and J. S. Chang, “THD of closed-loop analog PWM Class-D amplifiers,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 55, pp. 1769–1777, 2008.
[11] L. Risbo and C. Neesgaard, “PWM amplifier control loops with minimum aliasing distortion,” in Proc. 120th AES Convention, May 2006, vol. 6693.
[12] W. Shu and J. S. Chang, “IMD of closed-loop filterless Class D amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 2, pp. 518–527, Feb. 2010.
[13] X. Jiang, J. Song, D. Cheung, M.Wang, and S. Arunachalam, “Integrated Class-D audio amplifier with 95% efficiency and 105 dB SNR,” IEEE J. Solid-State Circuits, vol. 49, no. 11, pp. 2387–2396, Nov. 2014.
[14] S.-H. Chien, Y.-W. Chen, and T.-H. Kuo, “A 0.96mA Quiescent Current, 0.0032% THD+N, 1.45W Class-D Audio Amplifier with Area-Efficient PWM-Residual-Aliasing Reduction” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 60-61.
[15] S. Kwon et al., “A 0.028% THD+N, 91% power-efficiency, 3-level PWM Class-D amplifier with a true differential front-end,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 96–97.
[16] W.-C. Wang, Y.-H. Lin, “A 0.0004% (-108dB) THD+N, 112dB-SNR, 3.15W Fully Differential Class-D Audio Amplifier with Gm Noise Cancellation and Negative Output-Common-Mode Injection Techniques” in IEEE ISSCC Dig. Tech. Papers, Feb. 2018, pp. 58-59.
[17] 王泓斌(2018),「零相位偏移PWM混疊失真抑制之D類音頻放大器的分析與驗證」,國立成功大學電機工程學系碩士論文。
[18] 陳翊文(2016),「具脈寬調變互調失真抑制之低靜態電流高傳真D類音頻放大器」,國立成功大學電機工程學系碩士論文。
[19] S.-H. Chien, L.-T. Wu, S.-Y. Chen, R.-D. Jan, M.-Y. Shih, C.-T. Lin, and T.-H. Kuo, “An Open-Loop Class-D Audio Amplifier with Increased Low-Distortion Output Power and PVT-Insensitive EMI Reduction,” in IEEE Custom Integrated Circuits Conference (CICC), Sept. 2014, pp. 1-4.
[20] F. Guanziroli, R. Bassoli, C. Crippa, D. Devecchi, and G. Nicollini, “A 1 W 104 dB SNR Filter-Less Fully-Digital Open-Loop Class D Audio Amplifier With EMI Reduction,” IEEE J. Solid-State Circuits, vol. 47, no. 3, pp. 686–698, Mar. 2012.
[21] S. Ramaswamy et al., “A High-Performance Digital-Input Class-D Amplifier with Direct Battery Connection in a 90nm Digital CMOS Process,” ISSCC Dig. Tech. Papers, pp. 436-437, Feb. 2008.
[22] L. Dooper and M. Berkhout, “A 3.4 W digital-in Class-D audio amplifier in 0.14μm CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 7, pp. 1524–1534, Jul. 2012.
[23] M. Berkhout, L. Dooper, B. Krabbenborg, and J. Somberg, “A 4Ω 2.3W Class-D audio amplifier with embedded DC-DC boost converter, current-sensing ADC and DSP for adaptive speaker protection,” ISSCC Dig. Tech. Papers, pp. 180-181, Feb. 2013.
[24] T. Ido, S. Ishizuka, L. Risbo, F. Aoyagi, and T. Hamasaki, “A digital input controller for audio Class-D amplifiers with 100W 0.004% THD+N and 113dB DR,” ISSCC Dig. Tech. Papers, pp. 1366-1375, Feb. 2006.
[25] K. H. Chen and Y. S. Hsu, “A high-PSRR reconfigurable class-AB/D audio amplifier driving a hands-free/receiver 2-in-1 loudspeaker,” IEEE J. Solid-State Circuits, vol. 47, no. 11, pp. 2586–2603, Nov. 2012.
[26] J. M. Liu, S. H. Chien and T. H. Kuo, “Optimal design for delta–sigma modulators with root loci inside unit circle,” IEEE Trans. Circuits Syst. II, vol. 59, no. 2, pp. 83-87, Feb. 2012.
[27] Tai-Haur Kuo, Kuan-Dar Chen, and Jhy-Rong Chen, “Automatic Coefficients Design for High-Order Sigma-Delta Modulators,” IEEE Trans. Circuits Syst. II – Analog Digit. Signal Process., vol. 6, no. 1, pp. 6-15, Jan. 1999.
[28] K. Nielsen, “A Review and Comparison of Pulse-Width Modulation (PWM) Methods for Analog and Digital Input Switching Power Amplifiers,” in Proc. 102nd AES Convention, Mar. 1997. preprint no. 4446.
[29] M. Johansen and K. Nielsen, “A review and comparison of digital PWM methods for digital pulse modulation amplifier (PMA) systems,” in Proc. 107th AES Convention, Sep. 1999. preprint no. 5039.
[30] P. Balmelli et al., “A low-EMI 3-W audio Class-D amplifier compatible with AM/FM radio,” IEEE J. Solid-State Circuits, vol. 48, no. 8, pp. 1771–1782, Aug. 2013.
[31] X. Jiang, “Fundamentals of audio class D amplifier design: a review of schemes and architectures,” IEEE Solid-State Circuits Mag., vol. 9, no. 3, pp. 14–25, Aug. 2017.
[32] E. Gaalaas, B. Y. Liu, N. Nishimura, R. Adams, and K. Sweetland, “Integrated stereo Delta-Sigma class D amplifier,” IEEE J.Solid-State Circuits, vol.40, no.12, pp. 2388-2397, Dec. 2005.
[33] P. P. Siniscalchi, and R. K. Hester, “A 20 W Channel Class-D Amplifier With Near-Zero Common-Mode Radiated Emissions,” IEEE J. Solid-State Circuits, vol.44, no.12, pp. 3264-3271, Dec. 2009.
[34] Yoshihisa Fujimoto, Pascal Lo Ré, and Masayuki Miyamoto, “A Delta-Sigma Modulator for a 1-Bit Digital Switching Amplifier,” IEEE J.Solid-State Circuits, vol.40, no.9, pp. 1865-1871, Sep. 2005.
[35] F. Nyboe, C. Kaya, L. Risbo, P. Andreani, “A 240W Monolithic Class-D Audio Amplifier Output Stage,” ISSCC Dig. Tech. Papers, pp. 1346-1355, Feb. 2006.
[36] Marco Berkhout, “A 460W Class-D Output Stage with Adaptive Gate Drive,” ISSCC Dig. Tech. Papers, pp. 451-453, Feb. 2009
[37] A. Nagari, E. Allier, F. Amiard, V. Binet, and C. Fraisse, “An 8 2.5 W 1%-THD 104 dB(A)-dynamic-range Class-D audio amplifier with ultralow EMI system and current sensing for speaker protection,” IEEE J. Solid-State Circuits, vol. 47, no. 12, pp. 3068–3080, Dec. 2012.
[38] M. Berkhout, L. Dooper, and B. Krabbenborg, “A 4 Ω 2.65 W Class-D audio amplifier with embedded DC-DC boost converter, current sensing ADC and DSP for adaptive speaker protection,” IEEE J. Solid-State Circuits, vol. 48, pp. 2952–2961, 2013.