簡易檢索 / 詳目顯示

研究生: 張勝傑
Zhang, Sheng-Jie
論文名稱: 混合再生能源發電系統之直流微電網採用電網跟隨與電網形成逆變器連接至多機系統之穩定度分析研究
Stability Analysis of a DC Microgrid in a Hybrid Renewable Energy Generation System Using Grid Following and Grid Forming Inverters Connected to a Multi Machine System
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 133
中文關鍵詞: 混合式再生能源波浪發電系統生質能發電系統直流微電網超級電容器儲能系統多機電力系統電力系統穩定度
外文關鍵詞: Hybrid renewable energy, Wave power generation system, biomass energy generation systems, DC microgrid, supercapacitor, multi-machine power systems, power systems stability
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出用於含有再生能源發電系統及儲能系統採用電網跟隨與電網形成逆變器連接至交流側之控制策略,該微電網由波浪發電系統、生質能發電系統、雙向直流對直流轉換器,以及超級電容器儲能系統等設備組成經由電網跟隨與電網形成逆變器連接至多機系統。本論文在虛擬同步機的基礎上,使用了基於電網形成逆變器之控制策略,分別完成抑制再生能源發電系統之實功率、直流鏈電壓及交流側頻率偏差量,並比較系統於加入虛擬慣性控制前後之差異。本論文分別完成該系統架構在不同工作條件下之穩態時域及頻域分析,並完成該系統架構在不同干擾條件下之動態與暫態時域模擬。

    This paper proposes a control strategy for integrating grid-following and grid-forming inverters on the AC side in a renewable energy generation system with an energy storage system. The microgrid comprises wave power generation systems, biomass power generation systems, bidirectional DC-DC converters, and supercapacitor energy storage systems, all connected to a multi-machine system through grid-following and grid-forming inverters. Based on the virtual synchronous machine, this paper employs a control strategy for grid-forming inverters to respectively suppress the active power, DC-link voltage, and AC-side frequency deviations of the renewable energy generation system. It also compares the differences in the system before and after implementing virtual inertia control. The paper completes steady-state time-domain and frequency-domain analyses of the system architecture under different operating conditions and performs dynamic and transient time-domain simulations of the system architecture under various disturbance conditions.

    摘要 I Abstract II 致謝 XI 目錄 XII 表目錄 XVI 圖目錄 XVIII 符號說明 XXI 第一章 緒論 1 1-1 研究背景與動機 1 1-2 相關文獻回顧 2 1-3 本文之貢獻 5 1-4研究內容概述 5 第二章 研究系統之架構與數學模型 7 2-1 前言 7 2-2 生質能發電系統之數學模型 10 2-2-1 旋角控制器之數學模型 10 2-2-2 溫度控制 11 2-2-3 燃料系統控制 12 2-2-4 壓縮機-渦輪機模型 13 2-3 波浪發電系統之數學模型 14 2-3-1 阿基米德波浪搖擺之數學模型 14 2-3-2 線性永磁發電機之數學模型 15 2-3-3 線性永磁式發電機之電壓源轉換器控制方塊圖 18 2-4 超級電容器儲能系統之數學模型 19 2-4-1 超級電容器之數學模型 20 2-4-2 雙向直流對直流換流器之數學模型 21 2-5 直流負載轉換器之數學模型 23 2-6 直流對交流電壓源換流器之數學模型 25 2-7 多機系統模型 28 2-7-1 同步發電機之數學模型 28 2-7-2 激磁系統之數學模型 30 2-7-3 蒸氣渦輪機轉矩之數學模型 32 2-7-4 調速機之數學模型 33 2-7-5 負載與傳輸線網路之數學模型 34 第三章 電網形成與電網跟隨控制策略 37 3-1 前言 37 3-2 電網跟隨之控制迴路 37 3-3 電網形成之控制迴路 39 3-4 參數設計方法 40 第四章 研究系統之穩態分析 43 4-1 前言 43 4-2 特徵值求得方法 44 4-3 研究系統架構於案例一之系統特徵值結果 46 4-4 研究系統架構於案例二之系統特徵值分析 55 4-5 研究系統架構於案例三之系統特徵值分析 62 第五章 系統動態與暫態分析 69 5-1 前言 69 5-2 動態響應分析 69 5-2-1 動態案例一之輸入波浪變動 70 5-2-2 動態案例二之輸入波浪變動與負載變動分析 75 5-3 暫態響應分析 80 5-3-1 暫態案例一之生質能廠跳脫分析 80 5-3-2 暫態案例二之三相短路故障 85 第六章 結論與未來研究方向 90 6-1 結論 90 6-2 未來研究方向 91 參考文獻 93 附錄:本論文研究系統架構所使用之參數 101

    W. Du, Z. Chen, K. P. Schneider, R. H. Lasseter, and S. P. Nandanoori, “A comparative study of two widely used grid-forming droop controls on microgrid small-signal stability,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 8, no. 2, pp. 963-975, Sep. 2019.
    W. Qiu, Q. Yang, T. Yang, X. Ma, and X. Xiao, “A grid forming/following sequence switching control strategy for supporting frequency stability of isolated power grids,” in Proc. 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, Mar. 23-26, 2023, pp. 212-217.
    P. Sun, H. Xu, J. Yao, Y. Chi, S. Huang, and J. Cao, “Dynamic interaction analysis and damping control strategy of hybrid system with grid-forming and grid-following control modes,” IEEE Trans. Energy Conversion, vol. 38, no. 3, pp. 1639-1649, Sep. 2023.
    B. Pawar, E. I. Batzelis, S. Chakrabarti, and B. C. Pal, “Grid-forming control for solar PV systems with power reserves,” IEEE Trans. Sustainable Energy, vol. 12, no. 4, pp. 1947-1959, Apr. 2021.
    L. A. M. Lima and E. H. Watanabe, “Hybrid control scheme for VSC presenting both grid-forming and grid-following capabilities,” IEEE Trans. Power Delivery, vol. 37, no. 6, pp. 4570-4581, Feb. 2022.
    X. Fu, J. Sun, M. Huang, Z. Tian, and H. Yan, “Large-signal stability of grid-forming and grid-following controls in voltage source converter: a comparative study,” IEEE Trans. Power Electronics, vol. 36, no. 7, pp. 7832-7840, Jul. 2021.
    W. Du, F. K. Tuffner, K. P. Schneider, R. H. Lasseter, J. Xie, Z. Chen, and B. Bhattarai, “Modeling of grid-forming and grid-following inverters for dynamic simulation of large-scale distribution systems,” IEEE Trans. Power Delivery, vol. 36, no. 4, pp. 2035-2045, Aug. 2021.
    D. Mi, T. Wang, M. Gao, and Z. Wang, “Small signal stability analysis of PMSG-VSG and optimal design for control parameters,” in Proc. 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, Aug. 02-06, 2020, pp. 1-5.
    X. Gao, D. Zhou, A. A. Moghaddam, and F. Blaabjerg, “Stability analysis of grid-following and grid-forming converters based on state-space model,” in Proc. 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia), Himeji, Japan, May 15-19, 2022, pp. 422-428.
    J. Liu, Y. Miura, and T. Ise, “Comparison of dynamic characteristics between virtual synchronous generator and droop control in inverter-based distributed generators,” IEEE Trans. Power Electronics, vol. 31, no. 5, pp. 3600-3611, May 2016.
    J. Liu, Y. Miura, H. Bevrani, and T. Ise, “Enhanced virtual synchronous generator control for parallel inverters in microgrids,” IEEE Trans. Smart Grid, vol. 8, no. 5, pp. 2268-2277, Sep. 2017.
    J. Alipoor, Y. Miura, and T. Ise, “Power system stabilization using virtual synchronous generator with alternating moment of inertia,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 2, pp. 451-458, Jun. 2015.
    C. A. Karim, X. Liang, and H. Zhang, “Fuzzy-secondary-controller-based virtual synchronous generator control scheme for interfacing inverters of renewable distributed generation in microgrids,” IEEE Trans. Industry Applications, vol. 54, no. 2, pp. 1047-1061, Mar. 2015.
    G. Melath, S. Rangarajan, and V. Agarwal, “A novel control scheme for enhancing the transient performance of an islanded hybrid AC-DC microgrid,” IEEE Trans. Power Electronics, vol. 34, no. 10, pp. 9644-9654, Oct. 2019.
    A. Fathi, Q. Shafiee, and H. Bevrani, “Robust frequency control of microgrids using an extended virtual synchronous generator,” IEEE Trans. Power Systems, vol. 33, no. 6, pp. 6289-6297, Nov. 2018.
    M. Li, W. Huang, N. Tai, L. Yang, D. Duan, and Z. Ma, “A dual-adaptivity inertia control strategy for virtual synchronous generator,” IEEE Trans. Power Systems, vol. 35, no. 1, pp. 594-604, Jan. 2020.
    K. Jiang, H. Su, H. Lin, K. He, H. Zeng, and Y. Che, “A practical secondary frequency control strategy for virtual synchronous generator,” IEEE Trans. Smart Grid, vol. 11, no. 3, pp. 2734-2736, May 2020.
    H. Xu, C. Yu, C. Liu, Q. Wang, and X. Zhang, “An improved virtual inertia algorithm of virtual synchronous generator,” Journal of Modern Power Systems and Clean Energy, vol. 8, no. 2, pp. 377-386, Mar. 2020.
    B. Long, Y. Liao, K. T. Chong, J. Rodríguez, and J. M. Guerrero, “MPC-controlled virtual synchronous generator to enhance frequency and voltage dynamic performance in islanded microgrids,” IEEE Trans. Smart Grid, vol. 12, no. 2, pp. 953-964, Mar. 2021.
    F. Yao, J. Zhao, X. Li, L. Mao, and K. Qu, “RBF neural network based virtual synchronous generator control with improved frequency stability,” IEEE Trans. Industrial Informatics, vol. 17, no. 6, pp. 4014-4024, Jun. 2021.
    B. Long, Y. Liao, K. T. Chong, J. Rodríguez, and J. M. Guerrero, “Enhancement of frequency regulation in AC microgrid: A fuzzy-MPC controlled virtual synchronous generator,” IEEE Trans. Smart Grid, vol. 12, no. 4, pp. 3138-3149, Jul. 2021.
    J. Fang, Y. Tang, H. Li, and X. Li, “A battery/ultracapacitor hybrid energy storage system for implementing the power management of virtual synchronous generators,” IEEE Trans. Power Electronics, vol. 33, no. 4, pp. 2820-2824, Apr. 2018.
    W. Janke, “Averaged models of pulse-modulated DC-DC power converters. Part I: Discussion of standard methods,” Archives of Electrical Engineering, vol. 61, no. 4, pp. 609-631, Nov. 2012.
    H. Liang, L. Yan, L. Yu, and J. Han, “Design of micro-grid with biogas power generation,” in Proc. International Conference on Renewable Power Generation (RPG 2015), Beijing, China, Oct. 17-18, 2015.
    B. Zhou, D. Xu, C. Li, C.-Y. Chung, Y. Cao, K.-W. Chan, and Q. Wu, “Optimal scheduling of biogas–solar–wind renewable portfolio for multicarrier energy supplies,” IEEE Trans. Power Systems, vol. 33, no. 6, pp. 6229-6239, Nov. 2018.
    D. Xu, B. Zhou, K. W. Chan, C. Li, Q. Wu, B. Chen, and S. Xia, “Distributed multi-energy coordination of multi-microgrids with biogas-solar-wind renewables,” IEEE Trans. Industrial Informatics, vol. 15, no. 6, pp. 3254-3266, Jun. 2019.
    D. Alkano, J. M. A. Scherpen, and Y. Chorfi,” Asynchronous distributed control of biogas supply and multi-energy demand”, IEEE Trans. Automation Science and Engineering, vol. 14, no.2, pp. 558-572, Apr. 2017.
    P. Asgharian and R. Noroozian, “Modeling and simulation of microturbine generation system for simultaneous grid-connected/islanding operation,” 2016 24th Iranian Conference on Electrical Engineering (ICEE), Shiraz, Iran, May. 10-12, 2016, pp. 1528-1533.
    H. Polinder, M. E. C. Damen, and F. Gardner, “Linear PM generator system for wave energy conversion in the AWS,” IEEE Trans. Energy Conversion, vol. 19, no. 3, pp. 583-589, Sep. 2004.
    H. Polinder, M. E. C. Damen, and F. Gardner, “Design, modelling and test results of the AWS PM linear generator,” European Transactions on Electrical Power, vol. 15, no. 3, pp. 245-256, May/Jun. 2005.
    F. Wu, X.-P. Zhang, P. Ju, and M. J. H. Sterling, “Optimal control for AWS-based wave energy conversion system,” IEEE Trans. Power Systems, vol. 24, no. 4, pp. 1747-1755, Sep. 2009.
    C. E. Miller, A. van Zyl, and C. F. Landy, “Modelling a permanent magnet linear synchronous motor for control purposes,” in Proc. 2002 IEEE Africon Conference, George, South Africa, Oct. 2-4, 2002, pp. 671-674.
    M. I. Marei, M. Mokhtar, and A. A. El-Sattar, “MPPT strategy based on speed control for AWS-based wave energy conversion system,” Renewable Energy, vol. 83, pp. 305-317, Nov. 2015.
    武光山,採用以超級電容器為基礎之儲能設備於含有市電併聯型混合再生能源系統之性能改善,國立成功大學電機工程學系博士論文,2017年6月。
    羅得銘,含整合風能與波浪發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2013年6月。
    F. Wu, X.-P. Zhang, P. Ju, and M. J. H. Sterling, “Modeling and control of AWS-based wave energy conversion system integrated into power grid,” IEEE Trans. Power Systems, vol. 23, no. 3, pp. 1196-1204, Aug. 2008.
    L. Shi and M. L. Crow, “Comparison of ultracapacitor electric circuit models,” 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008, pp. 1-6.
    K. M. Cheema, N. I. Chaudhary, M. F. Tahir, K. Mehmood, M. Mudassir, M. Kamran, A. H. Milyani, and K. Chaudhari, “Virtual synchronous generator: Modifications, stability assessment and future applications,” Energy Reports, vol. 8, pp. 1704-1717, Nov. 2022.
    W. Wu, Y. Chen, A. Luo, L. Zhou, X. Zhou, L. Yang, Y. Dong, and J. M. Guerrero, “A virtual inertia control strategy for DC microgrids analogized with virtual synchronous machines,” IEEE Trans. Industrial Electronics, vol. 64, no. 7, pp. 6005-6016, Jul. 2017.
    黃志宏,設計混合式儲能系統之自適應模糊邏輯控制器以達成混合太陽/風能微電網系統的功率平滑,2022年7月。
    P. M. Anderson and A. A. Fouad, Power System Control and Stability, Piscataway, NJ, USA: Wiley-IEEE Press, 2003.
    P. W. Sauer and M. A. Pai, Power System Dynamics and Stability, Upper Saddle River, NJ, USA: Prentice-Hall, 1998.
    X. Xu, R. M. Mathur, J. Jiang, G. J. Rogers, and P. Kundur, “Modeling of generators and their controls in power system simulations using singular perturbations,” IEEE Trans. Power Systems, vol. 13, no. 1, pp. 109-114, Feb. 1998.
    K. Shi, W. Song, H. Ge, P. Xu, Y. Yang, and F. Blaabjerg, “Transient analysis of microgrids with parallel synchronous generators and virtual synchronous generators,” IEEE Trans. Energy Conversion, vol. 35, no. 1, pp. 95-105, Mar. 2020.
    彭賢倫,整合風能、太陽能與波浪能發電系統之直流微電網穩定度分析與研究,國立成功大學電機工程學系碩士論文,2019年7月。
    柯王君奕,採用全釩氧化還原液流電池及超級電容器於市電併聯型混合再生能源系統之穩定度改善分析,國立成功大學電機工程學系碩士論文,2020年7月。
    高浩瑜,使用自適應類神經網路控制器於混合交流/直流微電網系統之性能改善,國立成功大學電機工程學系碩士論文,2021年6月。
    黃弘昇,整合風能、燃料電池、微渦輪發電系統之直流微電網饋入多機系統的穩定度分析,2021年6月。
    李旻舫,雙向互連轉換器於孤島混合交流/直流微電網之頻率控制策略,國立成功大學電機工程學系碩士論文,2022年7月。

    無法下載圖示 校內:2029-06-17公開
    校外:2029-06-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE