簡易檢索 / 詳目顯示

研究生: 林恆瑤
Lin, Heng-Yao
論文名稱: 以低電壓電流式電路設計之語意修辭模糊邏輯控制器
Linguistic-Hedge Fuzzy Logic Controller Design Based on Low-Voltage Current-Mode Techniques
指導教授: 劉濱達
Liu, Bin-Da
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 78
中文關鍵詞: 混合訊號模糊邏輯控制電流式低電壓
外文關鍵詞: mixed signal, low voltage, current-mode, fuzzy logic control
相關次數: 點閱:121下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們利用低電壓電路設計方式,實現一名為語意修辭模糊邏輯控制器的新型模糊邏輯控制器。在電路實現方面,採用混合訊號電路和管線式時脈的設計方法。系統中之訊號處理單元以電流式電路實現,不但可以簡化電路的複雜度,更易於低電壓電路設計。
    為了達到低電壓之目的,本論文採用兩種低電壓電路設計之技術:wide-swing及level-shifter技術。wide-swing技術提供較高的準確度;level-shifter技術適合於低電壓之應用。由此,我們設計許多低電壓電路,例如最大電流選擇器、最小電流選擇器、平方電路及平方根電路,並據以實現一低電壓操作之語意修辭模糊邏輯控制器。
    本設計所需之電源供應電壓為1.5V,總功率消耗為18mW。模擬結果顯示此語意修辭模糊邏輯控制器之正確性。

    In this thesis, we use low voltage circuit design technique to implement a novel fuzzy logic controller called linguistic hedge fuzzy logic controller. This design is based on a mixed-signal circuit design with pipelined strategy. A current-mode approach is adopted in the signal processing unit, thus not only circuit complexity can be reduced but supply voltage can be decreased.
    Two low-voltage techniques are considered, they are wide-swing technique and level-shifter technique. The wide-swing technique provides a high accuracy; the level-shifter technique is suitable for low-voltage applications. We design several low-voltage circuits such as maximum current selector, minimum current selector, squarer/divider circuit, and square-rooter/multiplier circuit. Finally, a low-voltage linguistic hedge fuzzy logic controller is implemented.
    The supply voltage of this design is 1.5 V. The power consumption is 18 mW. Simulation results demonstrate the LHFLC performs well.

    Chapter 1: Introduction......1 1.1 Basic Concept......1 1.2 Motivation......3 1.3 Organization of the Thesis......4 Chapter 2: Review of Fuzzy Logic Controller......6 2.1 Fuzzy Set Theory and Fuzzy Set Operations......6 2.2 Fuzzy Linguistic Hedge......7 2.3 Fuzzy Logic Controller......9 2.4 LHFLC Architecture......13 2.4.1 Fuzzifier Module......14 2.4.2 Linguistic Hedge Module......15 2.4.3 Inference Engine......16 2.4.4 Defuzzifier Module......16 Chapter 3: Low-Voltage Current-mode Circuit Design Methodology......17 3.1 Low-Voltage Current Mirror......17 3.1.1 Wide-swing cascode current mirror......18 3.1.2 Level shifter current mirror......20 3.1.3 Summary......23 3.2 Basic Components in LHFLC with Low-Voltage technique......24 3.2.1 Current Repeater......25 3.2.2 Current Subtractor......26 3.2.3 Current Comparator......26 3.2.4 Square-rooter/Multiplier Circuit and Squarer/Divider Circuit......27 3.2.5 Minimum Current Selector Circuit......31 3.2.6 Maximum Current Selector Circuit......33 3.2.7 Switched-Current (SI) Memory Cell......34 3.2.8 Clock Generator......35 3.3 Simulation Results......36 3.3.1 Wide-Swing Current Mirror......36 3.3.2 Level-Shifter Current Mirror......38 3.3.3 Square-rooter / Multiplier Circuit......40 3.3.4 Squarer / Divider Circuit......41 3.3.5 Maximum current selector......42 3.3.6 Minimum current selector......43 3.3.7 Switched-Current (SI) Memory Cell......45 Chapter 4: Circuit Design of Low-Voltage LHFLC......46 4.1 Architecture for the Circuit Implementation of Linguistic- Hedge Fuzzy Logic Controller......46 4.2 Fuzzifier Module......47 4.2.1 Z-Shaped Membership Function Generator Circuit......48 4.2.2 S-Shaped Membership Function Generator Circuit......49 4.2.3 Λ-Shaped Membership Function Generator Circuit......50 4.3 Programmable Linguistic-Hedge Module......51 4.3.1 Linguistic-Hedge Circuits......51 4.3.2 Linguistic-Hedge Circuit Set (LHCS)......57 4.3.3 Interval Decision Circuit (IDC)......58 4.3.4 Register-Controlled Switch Array (RCSA)......59 4.4 Programmable Fuzzy Inference Engine Module......60 4.4.1 Minimum Current Selector Circuit Array......60 4.4.2 Programmable Rule Base......61 4.5 Defuzzifier Circuit......62 4.6 Simulation Results......63 4.6.1 Fuzzifier Module......63 4.6.2 Linguistic-Hedge Module......65 4.6.3 Interval Decision Circuit (IDC)......67 4.6.4 Defuzzifier Module......68 4.7 Verification of Low-Voltage LHFLC......69 Chapter 5: Conclusions and Future Works......71 5.1 Conclusions......71 5.2 Future Work......72 References......73

    [1] L. A. Zadeh, “Fuzzy sets”, Informat. Contr., vol. 8, pp. 338-353, 1965.
    [2] Y. Serika and Y. Jabata, “A health status model using a fuzzy approach”, Eur. J. Oper. Res., vol. 3, no. 1, pp. 40-49, Jan. 1979.
    [3] H. J. Zimmermann, Fuzzy Sets, Decision Making, and Expert Systems. New York: Kluwer Academic, 1987.
    [4] A. Kandel, Fuzzy Expert Systems. Boca Raton, FL: CRC Press, 1992.
    [5] P. J. King and E. H. Mandani, “The application of fuzzy control systems to industrial processes”, Automatica, vol. 13, no. 3, pp. 235-242, 1977.
    [6] O. Itoh, K. Gotoh, T. Nakayama, and S. Takamizawa, “Application of fuzzy control to activated sludge process”, in Proc. 2nd Int. Fuzzy Syst. Association Congress, Tokyo, Japan, July 1987, pp. 282-285.
    [7] M. Sugen and K. Murakami, “Fuzzy parking control of model car”, in Proc. 23rd IEEE Conf. Decision and Control, Las Vegas, NA, Dec. 1984, pp. 902-903.
    [8] O. Itoh, K. Gotoh, T. Nakayama, and S. Takamizawa, “Application of fuzzy control to activated sludge process”, in Proc. 2nd Int. Fuzzy Syst. Association Congress, Tokyo, Japan, July 1987, pp. 282-285.
    [9] C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller — Part I, II”, IEEE Trans. Syst., Man, Cybern., vol. 20, no. 2, pp. 404-432, Mar./Apr. 1990.
    [10] H. .J. Zinimennann, Fuzzy Set Theory and Its Applications, 2nd ed. Boston, MA: Kluwer, 1991.
    [11] D. G. Schwartz and G. J. Klir, “Fuzzy logic flowers in Japan”, IEEE Spectrum, vol. 29, no. 7, pp. 32-35, July 1992.
    [12] P. K. Simpson, “Fuzzy min-max neural networks — part 1: classification”, IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 776-786, Sept. 1994.
    [13] S. Abe and M. S. Lan, “A method for fuzzy rules extraction directly from numerical data and its application to pattern classification”, IEEE Trans. Fuzzy Syst., vol. 3, no. I, pp. 18-28, Feb. 1995.
    [14] L. X. Wang and J. M. Mendel, “Generating fuzzy rules by learning from examples”, IEEE Trans. Syst., Man, Cybern., vol. 22, no. 6, pp. 1414-1427, Nov. 1992.
    [15] I. B. Turksen and Y. Tian, “Two-level tree search in fuzzy expert system”, IEEE Trans. Syst., Man, Cybern., vol. 25, no. 4, pp. 555-568, Apr. 1995.
    [16] B. D. Liu and C. Y. Huang, “Design and implementation of the tree-based fuzzy logic controller”, IEEE Trans. Syst., Man, Cybern., vol. 27, no. 3, pp. 475-487, June 1997.
    [17] L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes”, IEEE Trans. Syst., Man, Cybern., vol. 3, no. I, pp. 28-44, Jan. 1973.
    [18] C. Y. Huang, C. Y. Chen, and B. D. Liu, “Current-mode linguistic hedge circuit for adaptive fuzzy logic controllers”, Electron. Lett., vol. 31, no. 17, pp. 1517-1518, Aug. 1995.
    [19] C. Y. Chen, C. Y. Huang, and B. D. Liu, “Current-mode fuzzy linguistic hedge circuit — contrast intensification”, in Proc. IEEE Int. Symp. Circuit and Syst., Atlanta, GA, May 1996, vol. 3, pp. 511-513.
    [20] C. Y. Chen, C. Y. Huang, B. D. Liu, and T. J. Su, “A current-mode fuzzy linguistic hedge circuit — more or less”, in Proc. IEEE 5th Int. Conf. Fuzzy Syst., New Orleans, LA, Sept. 1996, pp. 1080-1085.
    [21] B. D. Liu, C. Y. Chen, and J. Y. Tsao, “Design of adaptive fuzzy logic controller based on linguistic-hedge concepts and genetic algorithms,” IEEE Trans. Syst., Man, Cybern. B., vol. 31, no. 1, pp.31- 53, Feb. 2001.
    [22] C. Y. Huang, C. Y. Chen, and B. D. Liu, “Current-mode fuzzy linguistic hedge circuits”, Analog Integr. Circuits Signal Process., vol. 19, no. 3, pp. 255-278, June 1999.
    [23] S. S. Rajput, and S. S. Jamuar, “Low voltage analog circuit design techniques”, IEEE Circuits Syst. Mag., vol. 2, no. 1, pp. 24 -42, 2002.
    [24] M. Ismail and T. Fiez, Analog VLSI Signal and Information Processing. New York: McGraw-Hill, 1994.
    [25] S. Yan and E. Sanchez-Sinencio, “Low voltage analog circuit design techniques: a tutorial”, IEICE Trans. Fundamentals, vol. E83-A, Feb. 2000.
    [26] E. Sanchez-Sinencio and A. G. Andreou, Low Voltage / Low Power Integrated Circuit and Systems. IEEE Press, 1999.
    [27] J. Mulder, A. C. van der Woerd, W. A. Serdijn, and A. H. M. van Roermund, “Application of the back gate in MOS weak inversion translinear circuits”, IEEE Trans. Circuit Syst. Ⅰ, vol. 42, pp. 958-962, Nov. 1995.
    [28] J. Ramirez-Angulo, S. C. Choi, and G. G. Altamirano, “Low-voltage circuits building blocks using multiple-input floating-gate transistors”, IEEE Trans. Circuit Syst. Ⅰ, vol. 42, pp. 971-974, Nov. 1995.
    [29] P. Hasler, and T. S. Lande, “Overview of floating-gate devices, circuits, and systems”, IEEE Trans. Circuit Syst. Ⅱ, vol. 48, pp. 1-3, Jan. 2001.
    [30] Y. Berg, T. S. Lande, O. Naess, and H. Gundersen, “Ultra-low-voltage floating-gate transconductance amplifiers”, IEEE Trans. Circuit Syst. Ⅱ, vol. 48, pp. 37-44, Jan. 2001.
    [31] J. Ramirez-Angulo, R. G. Carvajal, J. Tombs, and A. Torralba, “Low-voltage CMOS op-amp with rail-to-rail input and output signal swing for continuous-time signal processing using multiple-input floating-gate transistors”, IEEE Trans. Circuit Syst. Ⅱ, vol. 48, pp. 111-116, Jan. 2001.
    [32] S. S. Rajput, and S. S. Jamuar, “Low voltage, low power, high performance current mirror for portable analogue and mixed mode applications”, IEE Proc. Circ. Devices Syst., vol. 148, no. 5, Oct. 2001, pp. 273-278.
    [33] S.S. Rajput, and S.S. Jamuar, “A high performance current mirror for low voltage designs”, in Proc. 2000 IEEE Asia-Pacific Conf. on Circuit and Syst., Tianjin, China, Dec. 2000, pp. 170-173.
    [34] S.S. Rajput, and S.S. Jamuar, “Low voltage, low power, high performance current conveyors”, in Proc. 1999 IEEE Int. Symp. Circuit and Syst., Australia, May 2001, pp. 723-726.
    [35] H. O. Elwan, and A. M. Soliman, “Low-voltage low-power CMOS current conveyors”, IEEE Trans. Circuit Syst. Ⅰ, vol. 44, pp. 828-835, Sept. 1997.
    [36] E. H. Mamdani, “Application of fuzzy logic to approximate reasoning using linguistic synthesis”, IEEE Trans. Comput., vol. C-26, no. 12, pp. 1182-1191, Dec. 1977.
    [37] C. Y. Chen, C.Y. Huang, and B. D. Liu, “Current-mode defuzzifier circuit to realize the centroid strategy,” IEE Proc. Circ. Devices Syst., vol. 144, no. 5, pp. 265-271, Oct. 1997.
    [38] J. N. Babanezhad and R. Gregorian, “A programmable gain/loss circuit,” IEEE J. of Solid-State Circuits, vol. 22, no. 6, pp. 1082-1090, Dec. 1987.
    [39] E. Bruun, and P. Shah, “Dynamic range of low-voltage cascode current mirrors”, in Proc. 1995 IEEE Int. Symp. Circuits Syst., Seattle, WA, May 1995, pp. 1328 -1331.
    [40] J. Ramirez-Angulo, “Low voltage current mirrors for built-in current sensors”, in Proc. 1994 IEEE Int. Symp. Circuits Syst., London, UK, May 1994, pp. 529 -532.
    [41] E. Seevinck and R. J. Wiegerink, “Generalized translinear circuit principle,” IEEE J. Solid-State Circuits, vol. SC-26, no. 8, pp. 1098-1102, Aug. 1991.
    [42] R. J. Wiegerink, Analysis and Synthesis of MOS Transhnear Circuits. Boston, MA: Kluwer Academic, 1993.
    [43] A. J. Lopez-Martin and A. Carlosena, “A systematic approach to the synthesis of square-root domain systems”, in Proc. 1999 IEEE Int. Symp. Circuit and Syst., Orlando, FL, May 1999, pp. 306-309.
    [44] A. J. Lopez-Martin and A. Carlosena, “Geometric-mean based current-mode CMOS multiplier/divider”, in Proc. 1999 IEEE Int. Symp. Circuit and Syst., Orlando, FL, May 1999, pp. 342 -345.
    [45] A. J. Lopez-Martin and A. Carlosena, “A 3.3 V tunable current-mode square-root domain biquad”, in Proc. 2000 IEEE Int. Symp. Circuit and Syst., Geneva, May 2000, pp. 5 -8.
    [46] A. J. Lopez-Martin and A. Carlosena, “A 1.5 V CMOS square-root domain filter”, in Proc. 2001 IEEE 8th Int. Conf. Electronics, Circuits and Systems, Malta, Sept. 2001, pp. 1465 -1468
    [47] C. Toumazou, J. B. Hughes, and D. M. Pattullo, “Regulated cascode switched-current memory cell”, Electron. Lett., vol. 26, no. 5, pp. 303-305, Mar. 1990
    [48] C. Y. Huang, “Design, implementation and application of fuzzy logic controller,” Ph.D. dissertation, National Cheng Kung University, Tainan, Taiwan, R.O.C. June 1997.
    [49] C. Y. Chen, “Architecture design and circuit implementation of linguistic-hedge fuzzy logic controller,” Ph.D. dissertation, National Cheng Kung University, Tainan, Taiwan, R.O.C. Jan. 2001.
    [50] P. H. Cannon, Dynamics of Physical Systems. New York: McGraw-Hill, 1967.
    [51] T. S. Li and C. Y. Tsai, “Parallel fuzzy sliding mode control of the cart-pole system”, in Proc. IEEE IECON’95, Orlando, FL, Nov.1995, pp.1468-1473.

    下載圖示 校內:2004-07-28公開
    校外:2004-07-28公開
    QR CODE