| 研究生: |
許凌倩 Hsu, Ling-Chien |
|---|---|
| 論文名稱: |
IC 封裝產品之銷售預測模式研究--以公司Y為例 IC Product Packaging and Sales Prediction Model Research --Using company Y as an example |
| 指導教授: |
林清河
Lin, Chin-Ho |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 預測 、灰關聯分析 、決策樹 、類神經網路 |
| 外文關鍵詞: | prediction, fuzzy-gray correlation analysis, decision tree, neural network |
| 相關次數: | 點閱:148 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
面對全球經濟劇烈變動,半導體產業隨著景氣的波動更為敏銳。面對總體經濟環境的不確定性,企業如何及早預測景氣波動,因應訂單的轉變進行決策及計畫擬定,為目前企業所重視的議題。因此,面對未來全球化經營及景氣波動,預測對於企業主而言是不可或缺的經營工具之一。
現今預測的問題屬於非線性模式較多,且近年來人工智慧的方法漸漸受到重視。因此,本研究利用灰關聯分析在各種環境因子中篩選出關聯度較高之因子,再利用資料探勘的決策樹手法找出各關聯因子;將灰關聯因子置入倒傳遞類神經網路預測模式,進行訂單量訓練與預測。期待此模式於業界中能提升預測準確度,提高訂單生產預測,並提供半導體IC封裝產業做為生產預測之參考。
The semiconductor industry has been subject to tremendous flux amidst a period of severe global economic change. Therefore, how to predict economic change and plan for order shifting in an uncertain production environment are important topics for most semiconductor companies. As globalization is a defining trend of the future, prediction becomes one of the necessary managing tools for entrepreneurs.
Most predictions nowadays are developed using nonlinear models, and employing artificial intelligence (AI) to engage in prediction is becoming more popular. Therefore, this research employs fuzzy-gray correlation analysis to sift factors which have higher correlations from different types of environmental factors, and find out the factor weight using the decision tree method of data mining, then placing those factors and weights into the back-propagation neural network (BPN) to engage in practices and predictions. This process is expected to increase the accuracy of predictions in the industry and improve order production predictions, and become a good reference for production prediction in the IC packaging industry.
網站部份
IDC,http://www.idc.com/
Gartner,http://www.gartner.com
MIC 資訊市場情報中心,http://mic.iii.org.tw/index.asp。
公開資訊觀測站,http://mops.twse.com.tw/mops/web/t147sb01
中華民國統計資訊網,http://www.stat.gov.tw/mp.asp?mp=4
行政院主計處,http://eng.stat.gov.tw/ct.asp?xItem=13213&CtNode=3504&mp=5
行政院經建會,http://www.cepd.gov.tw/m1.aspx?sNo=0000881
經濟部統計處,http://2k3dmz2.moea.gov.tw/gnweb/Indicator/wFrmIndicator.aspx
國際半導體設備材料產業協會(SEMI),http://www.semi.org/ch/MarketInfo/Book-to-Bill
中文部份
王瓊敏(2000),電腦關鍵零組件之價格預測模式,國立中央大學工業管理研究所碩士論文。
王進德、蕭大全(2003),類神經網路與模糊控制理論入門,台北:全華科技圖書股份有限公司。
林隆儀、羅文坤、鄭英傑(1981),「新產品行銷策略」,(五版),台北,超越企管顧問股份有限公司。
林育賢(2007),應用PSO類神經網路學習於軟式IC載板生產預測之研究,義守大學工業工程與管理研究所碩士論文。
溫坤禮、張偉哲、張廷政合著(2002),灰關聯模型方法與應用,台北:高立圖書有限公司。
葉怡成(2003),類神經網路模式應用與實作,台北:儒林圖書公司。
董鍾明 (2007) , 全 球 半 導 體 版 圖 變 遷 剖 析 , IEK 產 業 服 務 - 產 業 情 報 網 ,http://ieknet.itri.org.tw。
鄧聚龍(1985),灰色系統基本方法,武漢:華中理工大學出版社。
鄧聚龍、郭洪(1996),灰預測原理與應用,台北:全華出版社。
英文部份
Demantaras, R. L. A distance - based attribute selection measure for decision tree induction. Machine Learning, 6(1): 81-92. 1991.
Deng, J. L. Control Problems of Grey Systems. Systems and Control Letters, 1(5), 288-294. 1982.
Fayyad, U., Piatetsky Shapiro, G., & Smyth, P. The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11): 27-34. 1996.
Hui, S. C. &Jha, G. Data mining for customer service support. Information & Management, 38(1): 1-13. 2000.
Kotsiantis, S. B., Zaharakis, I. D., &Pintelas, P. E. Machine learning: a review of classification and combining techniques. Artificial Intelligence Review, 26(3): 159-190. 2006.
Law, R., & Au, N. “A Neural Network Model to Forecast Japanese Demand for
Travel to Hong Kong”, Tourism Management, 20, pp.89-97. 1999
Minowa, Y. Classification rules discovery from selected trees for thinning with the C4.5 machine learning system. Journal of Forest Research, 10(3): 221-231. 2005.
Mitra, S., Pal, S. K., Data mining in soft computing framework: A survey. IEEE Transactions on Neural Networks, 13(1): 3-14. 2002.
Qian, B. & Rasheed, K. Foreign exchange market prediction with multiple classifiers. Journal of Forecasting, 29(3): 271-284. 2010.
Quinlan, J. R. Induction of decision trees. Machine Learning, 1: 81-106. 1986.
Quinlan, J. R. C4.5: Programs for machine learning. Morgan Kaufman. 1993.
Ruggieri, S. Efficient C4.5. IEEE Transactions on Knowledge and Data Engineering, 14(2): 438-444. 2002.
Sorensen, K. & Janssens, G. K. Data mining with genetic algorithms on binary trees.European Journal of Operational Research, 151(2): 253-264. 2003.
Wu, P. Neural Network Source Code, NCSU, Raileigh, N. C., U.S.A. 1995.