| 研究生: |
紀柏丞 Chi, Po-Cheng |
|---|---|
| 論文名稱: |
以超音波噴塗熱裂解法研製非晶型氧化銦錫鋅全透明薄膜電晶體 A Study of Amorphous Indium-Tin-Zinc-Oxide Based All Transparent Thin-Film Transistors by Ultrasonic Spray Pyrolysis Deposition |
| 指導教授: |
許渭州
Hsu, Wei-Chou |
| 共同指導教授: |
劉漢胤
Liu, Han-Yin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 非晶型氧化銦錫鋅 、超音波噴塗熱裂解 、全透明薄膜電晶體 、負閘極照光偏壓測試 、氧化銦錫 、氧化鋅鋁 、氧化鋅鎵 |
| 外文關鍵詞: | amorphous ITZO, Ultrasonic Spray Pyrolysis Deposition, all transparent thin film transistor, negative bias illumination stress, ITO, AZO, GZO |
| 相關次數: | 點閱:87 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以超音波噴塗熱裂解法研製非晶型氧化銦錫鋅全透明薄膜電晶體,超音波噴塗熱裂解法具備低成本、非真空、高沉積速率之優勢,且能沉積出高品質及良好均勻度的薄膜,本次實驗利用此方法沉積氧化銦錫鋅主動層和氧化鋁介電層。非晶氧化銦錫鋅為極具潛力的材料由於與非晶氧化銦鎵鋅相比擁有更高的遷移率和穩定性。為了提升元件整體透光度使其平面顯示器中有更佳的應用,我們致力於製備全透明薄膜電晶體,在電極上,我們選用了三種透明導電氧化物:氧化鋅鋁、氧化鋅鎵和氧化銦錫,並分別探討在不同射頻濺鍍功率下,對於薄膜電晶體之電性影響,分別找出最佳化的濺鍍功率,並且比較之。
我們研究出元件搭配最佳化的氧化銦錫作為電極有最高的電子遷移率。在線性區轉換特性有著開關電流比~109、次臨界擺幅123 mV/dec、場效電子遷移率38.95 cm2/V-s和臨界電壓2.52"V" ,較高的電子遷移率歸因於最佳化的氧化銦錫有著最低的電阻率。元件搭配最佳化的氧化鋅鎵和氧化鋅鋁分別有著場效電子遷移率9.29 cm2/V-s和7.75 cm2/V-s,開關電流比皆為~108,元件電性主要受限於最佳化的氧化鋅鎵和氧化鋅鋁電阻率與常見之透明導電氧化物相比仍較大,因此影響了元件在導通電流的表現。
在薄膜電晶體穩定性之測試當中,閘極負偏壓照光測試常常被用來作為穩定度的指標,造成閘極負偏壓照光穩定性變化的主要原因來自照光後產生的電洞被侷限在介電層或通道層與介電層間,以及主動層中的電中性氧空缺照光後產生的電子被侷限在通道表面。在本次實驗中,我們用閘極加偏壓-5伏特以及持續照光3000秒,分別測試元件搭配最佳化電極氧化鋅鎵、氧化鋅鋁和氧化銦錫的穩定度,偏移量分別為-0.43 V、-0.43 V以及-0.57 V,元件搭配最佳化電極氧化鋅鎵、氧化鋅鋁有著比搭配最佳化氧化銦錫較佳的穩定性,我們推測氧化銦錫的能隙相較於氧化鋅鎵與氧化鋅鋁小,因此對於照光比較敏感,而影響整體元件在照光穩定度的表現。
在本論文中,成功以超音波噴塗熱裂解法製備非晶型氧化銦錫鋅全透明薄膜電晶體,此沉積薄膜方法在製程時間以及成本皆相當具有優勢。在元件電性表現方面擁有高透光度、高電子遷移率、高穩定性等優點,因此下個世代平面顯示器產業需要更大面積以及更高解析度的應用中,非晶型氧化銦錫鋅為極具潛力之材料,有望在未來取代市面上常見之非晶型氧化銦鎵鋅。
In this thesis, we fabricated amorphous ITZO all transparent thin-film transistors (TTFTs) by Ultrasonic Spray Pyrolysis Deposition (USPD). USPD has the advantages of low cost, non-vacuum, high deposition rates, and can deposit thin films with good quality and good uniformity. In this work, we deposited the ITZO channel layer and the Al2O3 dielectric layer by USPD. Amorphous ITZO is a highly promising material mainly because of its higher mobility and stability compared to amorphous IGZO. In order to improve the transmittance of the devices, we were committed to fabricating fully transparent TFTs. In the selection of electrodes, we selected three transparent conductive oxides: AZO, GZO, and ITO. We separately explored their electrical performance in contact with the TFTs under different RF sputter power, find out the optimized RF power, and compare them.
a-ITZO TTFTs in contact with optimized ITO electrodes exhibited the highest electron mobility. In the linear region, the device exhibited Ion/Ioff of ~109, field-effect mobility (μFE) of 38.95 cm2/V-s, subthreshold swing (S.S.) of 123 mV/dec, and threshold voltage (Vth) of 2.52" V" . The higher mobility was attributed to the optimized ITO had the lowest resistivity. The devices in contact with optimized GZO and AZO electrodes respectively exhibited μFE of 9.29 cm2/V-s and 7.75 cm2/V-s, the Ion/Ioff were both ~108. The electrical properties of the devices were mainly limited by the resistivity of optimized GZO and AZO, which were still relatively large compared to the general transparent conductive oxides, thus affecting the on-current performance of the devices.
In the TFTs stability test, the negative bias illumination stress (NBIS) has been recognized as the significant index for metal oxide TFTs. In this experiment, a-ITZO TTFTs with optimized GZO, AZO, and ITO electrodes were stress under VGS of for a stress duration of 3000s. The negative Vth shift were -0.43 V, -0.43 V, and -0.57 V respectively. The devices in contact with GZO and AZO electrodes exhibited more stable against NBIS test than ITO electrode. We speculated that the narrower bandgap of ITO than GZO and AZO was more sensitive to illumination and caused more severe device degradation.
In this study, the a-ITZO TTFTs were successfully fabricated by USPD. The USPD method has considerable advantages in process time and cost. In the electrical performance, the devices we fabricated have the advantages of high transmittance, high electron mobility, and good stability. Therefore, a-ITZO TFTs become as an alternative for a-IGZO TFTs in the next-generation of the flat panel display industry which requires higher electron mobility and larger sized.
[1] E. Fortunato, P. Barquinha, and R. Martins, "Oxide semiconductor thin-film transistors: A review of recent advances," Advanced Materials, vol. 24, no. 22, pp. 2945-2986, Jun. 2012.
[2] J. E. Medvedeva, D. B. Buchholz, and R. P. H. Chang, "Recent advances in understanding the structure and properties of amorphous oxide semiconductors," Advanced Electronic Materials, vol. 3, no. 9, p. 1700082, Sep. 2017.
[3] E. Fukumoto, T. Arai, N. Morosawa, K. Tokunaga, Y. Terai, T. Fujimori, and T. Sasaoka, "High-mobility oxide TFT for circuit integration of AMOLEDs," Journal of the Society For Information Display, vol. 19, no.12, pp. 867-872, Dec. 2011.
[4] J. Raja, K. Jang, C. P. T. Nguyen, J. Yi, N. Balaji, S. Q. Hussain, and S. Chatterjee, "Improvement of mobility in oxide-based thin film transistors: A brief review," Transactions on Electrical and Electronic Materials, vol. 16, no. 5, pp. 234-240, Oct. 2015.
[5] I. Noviyana, A. D. Lestari, M. Putri, M. S. Won, J. S. Bae, Y. W. Heo,and H. Y. Lee, "High mobility thin film transistors based on amorphous indium zinc tin oxide," Materials, vol. 10, no. 7, p. 702, Jul. 2017.
[6] J. H. Song, K. S. Kim, Y. G. Mo, R. Choi and J. K. Jeong, "Achieving high field-effect mobility exceeding 50 cm2/Vs in In-Zn-Sn-O thin-film transistors," IEEE Electron Device Letters, vol. 35, no. 8, pp. 853-855, Aug. 2014.
[7] J. B. Su, Y. Wang, Y. B. Ma, Q. Wang, L. J. Tian, S. Q. Dai, R. Li, X. Q. Zhang and Y. S. Wang, "Preparation and electrical characteristics of N-doped In-Zn-Sn-O thin film transistors by radio frequency magnetron sputtering," Journal of Alloys and Compounds, vol. 750, pp. 1003-1006, Jun. 2018.
[8] J.-Y. Noh, H. Kim, H.-H. Nahm, Y.-S. Kim, D. H. Kim, B.-D. Ahn, J.-H. Lim, G. H. Kim, J.-H. Lee and J. Song, "Cation composition effects on electronic structures of In-Sn-Zn-O amorphous semiconductors," Journal of Applied Physics, vol. 113, no. 18, p. 183706, May. 2013.
[9] A. Nathan, Kim, S. Lee, S. Jeon, and J. Robertson, "Amorphous oxide semiconductor TFTs for displays and imaging," Journal of Display Technology, vol. 10, no.11 pp. 917-927, Nov. 2014.
[10] K. Nomura, H. Ohta, A. Takagi, T.Kamiya, M. Hirano and H. Hosono "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, no.7016 pp. 488-492, Nov. 2004.
[11] J. Z. Sheng, J. H. Han, W. H. Choi, J. Park and J. S. Park, "Performance and stability enhancement of In-Sn-Zn-O TFTs using SiO2 gate dielectrics grown by low temperature atomic layer deposition," ACS Applied Materials & Interfaces, vol. 9, no.49 pp. 42928-42934, Dec. 2017.
[12] C. S. Fuh, P. T. Liu, W. H. Huang and S. M. Sze, "Effect of annealing on defect elimination for high mobility amorphous indium-zinc-tin-oxide thin-film transistor," IEEE Electron Device Letters, vol. 35, no. 11, pp. 1103-1105, Nov. 2014.
[13] F.J. Liu, D.F. Wang, L.B. Xin, L.C. Yan, M.L. Wang, G.C. Yuan, and G. Wang, " High Mobility ITZO BCE Type TFTs for AMOLED Applications," In SID Symposium Digest of Technical Papers, vol. 46, no. 1, pp. 1180-1183, Jul. 2015.
[14] M. Nakata, C. Zhao and J. Kanicki, "DC sputtered amorphous In–Sn–Zn–O thin-film transistors: Electrical properties and stability," Solid-State Electronics, vol. 116, pp. 22-29, Feb. 2016.
[15] Nobuyoshi Saito, Tomomasa Ueda, Tsutomu Tezuka, and Keiji Ikeda, "Origin of high mobility in InSnZnO MOSFETs," IEEE Journal of the Electron Devices Society, vol. 6, pp. 1253-1257, Nov. 2018.
[16] Z. Y. Li, H. Z. Yang, S. C. Chen, Y. B. Lu, Y. Q. Xin, T. L. Yang and H. Sun, "Impact of active layer thickness of nitrogen-doped In-Sn-Zn-O films on materials and thin film transistor performances," Journal of Physics D: Applied Physics, vol. 51, no, 17, p. 175101, May. 2018.
[17] P.-T. Liu, C.-H. Chang, and C.-S. Fuh, "Enhancement of reliability and stability for transparent amorphous indium-zinc-tin-oxide thin film transistors," RSC Advances, vol. 6, no. 108, pp. 106374-106379, Jun. 2016.
[18] D. G. Yang, J. H. Kim, H. D. Kim, and H. S. Kim, "Flexible amorphous Indium-Tin-Zinc Oxide (a-ITZO) thin-film transistors on polyimide substrate," IEEE 24th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD), Jul. 2017.
[19] D. H. Kima, H. J. Jeonga, J. Park and J. S. Parka, "The effect of solvent water content on the dielectric properties of Al2O3 films," Ceramic International, vol. 44, pp. 459-463, Jan. 2018.
[20] R. N. Bukke, C. Avis, and J. Jang, "Solution-processed amorphous In-Zn-Sn oxide thin-film transistor performance improvement by solution-processed Y2O3 passivation," IEEE Electron Device Letters, vol. 37, no.4, pp. 433-436, Apr. 2016.
[21] B. J. Kim, H. J. Kim, T. S. Yoon, Y. S. Yoon, Y. S. Kim, D. H. Lee, Y. Choi, B. H. Ryu, and H. H. Lee, "Solution processed IZTO thin film transistor on silicon nitride dielectric layer," Journal of Industrial and Engineering Chemistry, vol. 17, no. 1, pp. 96-99, Jan. 2011.
[22] B.-Y. Chou, W.-C. Hsu, H.-Y. Liu, C.-S. Lee, Y.-S. Wu, W.-C. Sun, S.-Y. Wei, S.-M. Yu, and M.-H. Chiang, "Investigations of AlGaN/GaN MOS-HEMT with Al2O3 deposition by ultrasonic spray pyrolysis method," Semiconductor Science and Technology, vol. 30, no. 1, Jan. 2015, Art. no. 015009.
[23] H. Y. Liu, V. Avrutin, N. Izyumskaya, U. Ozgur, and Y. Morkoc, "Transparent conducting oxides for electrode applications in light emitting and absorbing devices," Superlattices and Microstructures, vol. 48, no. 5, pp. 458-484, Nov. 2010.
[24]X. Jiang, F. L. Wong, M. K. Fung and S. T. Lee, "Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices," Applied Physics Letters, vol. 83, no. 9, pp. 1875-1877, Sep. 2003.
[25]J. Raja, K. Jang, C. P. T. Nguyen, J. Yi, N. Balaji, S. Q. Hussain, and S. Chatterjee, "Improvement of Mobility in Oxide-Based Thin Film Transistors: A Brief Review," Transactions on Electrical and Electronic Materials, vol. 16, no. 5, pp. 234-240, Oct. 2015.
[26]C. P. T. Nguyen, T. T. Trinh, J. Raja, A. H. T. Le, Y. J. Lee, V. A. Dao, and J. Yi, "Source/drain metallization effects on the specific contact resistance of indium tin zinc oxide thin film transistors," Materials Science in Semiconductor Processing, vol. 39, pp. 649-653, Nov. 2015.
[27]S. C. Lofgran, "Thin film deposition & vacuum technology," Idaho, 2013.
[28]H. Y. Liu, and G. J. Liu, "A comparative study of metal-semiconductor-metal ultraviolet photodetectors based on ultrasonic spray pyrolysis deposited anatase and rutile TiO2," IEEE Transactions on Electron Devices, vol. 64, no.3 pp. 1108-1113, Mar. 2017.
[29]S. Fernandez, and F. B. Naranjo, "Optimization of aluminum-doped zinc oxide films deposited at low temperature by radio-frequency sputtering on flexible substrates for solar cell applications," Solar Energy Materials & Solar Cells, , vol. 94, no.2 pp. 157-163, Feb. 2010.
[30]A. R. A. A. Sakhta, "Morphological and optical properties of pure and Mg doped tin oxide thin films prepared by spray pyrolysis method," American Journal of Nanosciences, 2017.
[31]J. F. Chang, H. L. Wang and M. H. Hon, "Studying of transparent conductive ZnO : Al thin films by RF reactive magnetron sputtering," Journal of Crystal Growth, vol. 211, no.1-4, pp. 93-97, Apr. 2000.
[32]A.P. Amalathas, and M. M. Alkaisi, "Effects of film thickness and sputtering power on properties of ITO thin films deposited by RF magnetron sputtering without oxygen," Journal of Materials Science: Materials in Electronics, , vol. 27, no.10 pp. 11064-11071, Oct. 2016.
[33]R. K. Shukla, A. Srivastava, A. Srivastava, and K. C. Dubey, "Growth of transparent conducting nanocrystalline Al doped ZnO thin films by pulsed laser deposition," Journal of Crystal Growth, vol. 294, no.2 pp. 427-431, Sep. 2006.
[34]K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi, U. K. Kim, C. S. Hwang, D. Lee, H. Hwang and J. K. Jeong, "Effect of high-pressure oxygen annealing on negative bias illumination stress-induced instability of InGaZnO thin film transistors," Applied Physics Letters, vol. 98, no. 10, p. 103509, Mar. 2011.
[35]K. H. Ji, J. I. Kim, H. Y. Jung, S. Y. Park, R. Choi and Y. G. Mo, "Comprehensive studies of the degradation mechanism in amorphous InGaZnO by the negative bias illumination stress," Microelectronic Engineering, vol. 88, no. 7, pp. 1412-1416, Jul. 2011.
[36]J. Park, Y. S. Rim, C. Li, J. C. Wu, M. Goorsky, and D. Streit, "Defect-induced instability mechanisms of sputtered amorphous indium tin zinc oxide thin-film transistors," Journal of Applied Physics, vol. 123, no.16, p. 161568, Apr. 2018.
[37]D. P. Wang, M. P. Hung, J. X. Jiang, T. Toda, C.Y. Li, and M. Furuta, "Effect of drain bias on negative gate bias and illumination stress induced degradation in amorphous InGaZnO thin-film transistors," Japanese Journal of Applied Physics, vol. 53, no.3, p. 03CC01, Mar. 2014.
[38]H. Oh, S. M. Yoon, M. K. Ryu, C.S. Hwang, S.Yang and S.H.K. Park, "Transition of dominant instability mechanism depending on negative gate bias under illumination in amorphous In-Ga-Zn-O thin film transistor," Applied Physics Letters, vol. 98, no. 3, p. 003504, Jan. 2011.
[39]E. Lee, M. D. H. Chowdhury, M. S. Park and J. Jang, "Effect of top gate bias on photocurrent and negative bias illumination stress instability in dual gate amorphous indium-gallium-zinc oxide thin-film transistor," Applied Physics Letters, vol. 107, no. 23, p. 233509, Dec. 2015.
校內:2024-07-13公開