簡易檢索 / 詳目顯示

研究生: 曾顗瑋
Tseng, I-Wei
論文名稱: Li2ZnTi3O8:Mn4+共添加Ge4+敏化劑之紅色螢光備製與光致發光特性研究
Preparation and Photoluminescence Enhancement of GeO2-Doped Li2ZnTi3O8:Mn4+ Red Phosphor
指導教授: 黃正亮
Huang, Cheng-Liang
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 97
中文關鍵詞: 第一原理計算Li2ZnTi3O8:Mn4+紅色螢光粉敏化劑
外文關鍵詞: ab-initio calculation, Li2ZnTi3O8:Mn4+, red phosphor, sensitizer
相關次數: 點閱:49下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究以高溫固態反應法合成Li2ZnTi3O8作為主體材料,主要使用Mn4+離子作為發光中心置換主體材料內的Ti格位,並以Ge4+離子作為敏化劑共摻雜進Li2ZnTi3O8增強放射光譜的強度,使螢光材料能夠放射出紅光,並探討其結構及光學性質。
    第一部分透過密度泛函理論之ab initio計算,建立出無摻雜、單摻雜Mn4+與共摻雜Ge4+之原子結構與能態密度圖。其結果發現在摻雜Mn4+離子之能態密度圖上,其價帶的頂端與導帶的底部皆有屬於Mn之3d軌域的貢獻,而Ge4+因為能態密度之重疊,能夠靠共振來減少多重聲子躍遷所造成之能量損失,作為敏化劑來增強放光強度。
      第二部分搭配TGA圖譜,探討在不同之燒結溫度下Li2ZnTi3O8:Mn4+之螢光特性,可以發現隨著溫度的上升,其放射強度有隨之增強的趨勢,而在1000°C時,有最強的放射光強度。透過XRD半高寬的擬和發現隨著溫度的增加,其半高寬也有下降的趨勢。
      第三部分探討不同Mn4+離子濃度對結構以及光學特性的影響,而在Mn4+離子濃度為0.3%時,會有最強的放射光譜強度,且其Raman之振動與拉伸皆與無摻雜之主體無太大落差,而SEM圖之表面形貌並沒有明顯的改變。在Li2ZnTi3O8:0.3%Mn4+在350 nm激發下,在680 nm處有一放射光,而其激發光譜範圍落在250-600 nm,可以使用紫外光、近紫外光以及藍光LED所激發,而漫反射光譜圖可以與其相互呼應。
      第四部份探討共摻雜不同Ge4+離子濃度對其螢光特性的影響,結果顯示Ge4+離子的摻雜能夠增強其放射光譜的強度,其強度增強約50%這與第一原理計算的結果相符。其CIE座標也由(0.7268, 0.2732)轉換至(0.7318, 0.2682),而色純度則由98.3%增加至99.5%。

    A novel red phosphor Li2ZnTi3O8: Mn4+ is discussed thoroughly. Ab initio calculation are performed on mono-doped Mn4+ and co-doped Ge4+ Li2ZnTi3O8 to predict the influences of its Density of states. Li2ZnTi3O8: Mn4+, Ge4+ red phosphors were successfully synthesized via high temperature solid state reaction method. The optimized concentration of Mn4+ and Ge4+ in Li2ZnTi3O8 host that was excited in 350nm was determined to be 0.3% and 0.4% , respectively. Through PLE and PL spectra analysis there is no obvious variation in PL spectra silhouette and position. The quantum efficiency increases when Mn4+ concentration increases. In addition, we successfully turned the CIE of Li2ZnTi3O8: 0.3% Mn4+ from (0.7268, 0.2732) to (0.7318, 0.2682) and the color purity from 98.3% to 99.5% by co-doping 0.4% Ge4+.

    中英摘要 I 致謝 X 目錄 XI 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 2 1.3主體材料介紹 4 第二章 理論與文獻回顧 7 2.1物質發光現象 7 2.2螢光材料介紹 8 2.2.1螢光材料設計 8 2.2.2主體晶格之選擇 11 2.2.3活化劑的選擇 12 2.3螢光材料發光分類 13 2.3.1激發光源分類 13 2.3.2螢光材料發光特性分類 14 2.4螢光體發光機制 17 2.4.1發光原理 17 2.4.2輻射發光 18 2.4.3能量緩解 20 2.4.4螢光體能量的激發與吸收 20 2.4.5史托克位移(Stokes Shift) 23 2.4.6能量轉移(Energy Transfer) 24 2.6影響發光特性因素 27 2.6.1主體共價效應(Covalency Effect) 27 2.6.2晶格場(Crystal field)效應 27 2.6.3濃度淬滅(Concentration quenching)效應 28 2.6.4熱淬滅(Thermal quenching)效應 29 2.6.5毒劑現象(Poisoning) 30 2.8色彩簡介 31 2.8.1色溫與相對色溫(Correlated Color Temperature, CCT) 31 2.8.2演色性指標(Color Rendering Index, CRI) 33 2.8.3色度座標圖(CIE Chromaticity Diagram) 33 2.9螢光材料的製備 35 2.9.1固態反應法[34] 35 第三章 實驗步驟與方法 37 3.1 第一原理計算 37 3.2 實驗藥品 38 3.3 實驗流程 39 3.3.1粉末製備與球磨 40 3.3.2 粉末的燒結 40 3.4 分析儀器與方法 41 3.4.1 X光繞射分析儀(X-Ray Diffraction Analysis, XRD) 41 3.4.2 熱重分析(Thermogravimetric Analysis, TGA) 42 3.4.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM)分析 43 3.4.4 微拉曼及微光激發光譜儀(Micro-Raman & Micro-PL Spectrometer) 43 3.4.5 螢光光譜儀( Fluorescence Spectrophotometer) 45 3.4.6 紫外光-可見光-近紅外光分光光譜儀(UV/Visible/NIR Spectrophotometer, UV-Vis) 46 3.4.7量子效率量測 47 3.4.8 C.I.E. 色度座標分析 47 第四章 實驗結果與討論 49 4.1 Li2ZnTi3O8 之VASP(Vienna Ab-initio Simulation Package)模擬 49 4.1.1 Li2ZnTi3O8之能態密度圖 49 4.1.2 Li2ZnTi3O8單摻Mn4+與共摻Ge4+之DOS 50 4.2 不同溫度下Li2ZnTi3O8摻雜0.3mol% Mn4+之特性探討 53 4.2.1 TGA分析 53 4.2.2 XRD分析 54 4.2.3 SEM分析 56 4.2.4 PL光譜分析 58 4.3 摻雜不同濃度Mn4+下Li2ZnTi3O8之特性探討 60 4.3.1 XRD分析 60 4.3.2 SEM分析 63 4.3.3 PL以及濃度淬滅分析 65 4.3.4 PLE 分析 69 4.3.5 UV-Vis分析 73 4.3.6 量子效率(Quantum efficiency, QE)分析 75 4.3.7 Raman光譜分析 77 4.3.8 熱淬滅(Thermal Quenching)分析 79 4.4 Li2ZnTi3O8摻雜0.3%Mn4+以Ge4+為敏化劑之特性探討 81 4.4.1 XRD分析 81 4.4.2 SEM分析 84 4.4.3 Raman分析 86 4.4.4 PLE/PL分析 86 4.4.5 CIE色度座標分析 89 第五章 結論 92 5.1研究結論 92 5.2未來展望 93 參考文獻 94

    [1] S. Zhang, Y. Hu, H. Duan, Y. Fu, and M. He, "An efficient, broad-band red-emitting Li2MgTi3O8:Mn4+ phosphor for blue-converted white LEDs," Journal of Alloys and Compounds, vol. 693, pp. 315-325, 2017.
    [2] 劉如熹 and 劉宇桓, 發光二極體用氧氮螢光粉介紹. 全華科技圖書, 2006.
    [3] S. Ye, F. Xiao, Y. Pan, Y. Ma, and Q. Zhang, "Phosphors in phosphor-converted white light-emitting diodes: Recent advances in materials, techniques and properties," Materials Science and Engineering: R: Reports, vol. 71, no. 1, pp. 1-34, 2010.
    [4] Z. Qiu, T. Luo, J. Zhang, W. Zhou, L. Yu, and S. Lian, "Effectively enhancing blue excitation of red phosphor Mg2TiO4: Mn4+ by Bi3+ sensitization," Journal of Luminescence, vol. 158, pp. 130-135, 2015.
    [5] T. Senden, F. T. Broers, and A. Meijerink, "Comparative study of the Mn4+ 2E→ 4A2 luminescence in isostructural RE2Sn2O7: Mn4+ pyrochlores (RE3+= Y3+, Lu3+ or Gd3+)," Optical Materials, vol. 60, pp. 431-437, 2016.
    [6] R. Cao et al., "Preparation and photoluminescence characteristics of Li2Mg3SnO6: Mn4+ deep red phosphor," Materials Research Bulletin, vol. 87, pp. 109-113, 2017.
    [7] L. Huang et al., "HF-Free Hydrothermal Route for Synthesis of Highly Efficient Narrow-Band Red Emitting Phosphor K2Si1–x F6: x Mn4+ for Warm White Light-Emitting Diodes," Chemistry of Materials, vol. 28, no. 5, pp. 1495-1502, 2016.
    [8] X. Jiang, Y. Pan, S. Huang, X. a. Chen, J. Wang, and G. Liu, "Hydrothermal synthesis and photoluminescence properties of red phosphor BaSiF 6: Mn 4+ for LED applications," Journal of Materials Chemistry C, vol. 2, no. 13, pp. 2301-2306, 2014.
    [9] H. S. Kim, K.-i. Machida, T. Horikawa, and H. Hanzawa, "Luminescence properties of CaAlSiN3:Eu2+ phosphor prepared by direct-nitriding method using fine metal hydride powders," Journal of Alloys and Compounds, vol. 633, pp. 97-103, 2015.
    [10] H. Yuan, Z. Huang, F. Chen, Q. Shen, and L. Zhang, "Plasma activated synthesis and photoluminescence of red phosphor Sr 2 Si 5 N 8 :Eu 2+," Journal of Alloys and Compounds, vol. 720, pp. 521-528, 2017.
    [11] S. Schmiechen et al., "Nitridomagnesosilicate Ba[Mg3SiN4]:Eu2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors," Chemistry of Materials, vol. 27, no. 5, pp. 1780-1785, 2015.
    [12] R.-J. Xie, N. Hirosaki, T. Suehiro, F.-F. Xu, and M. Mitomo, "A simple, efficient synthetic route to Sr2Si5N8: Eu2+-based red phosphors for white light-emitting diodes," Chemistry of materials, vol. 18, no. 23, pp. 5578-5583, 2006.
    [13] K. T. Rim, K. H. Koo, and J. S. Park, "Toxicological evaluations of rare earths and their health impacts to workers: a literature review," Safety and health at work, vol. 4, no. 1, pp. 12-26, 2013.
    [14] J. Meyer and F. Tappe, "Photoluminescent materials for solid‐state lighting: state of the art and future challenges," Advanced Optical Materials, vol. 3, no. 4, pp. 424-430, 2015.
    [15] R. Cao, D. Ceng, P. Liu, X. Yu, S. Guo, and G. Zheng, "Synthesis and photoluminescence properties of LaAlO 3: Mn 4+, Na+ deep red-emitting phosphor," Applied Physics A, vol. 122, no. 4, p. 299, 2016.
    [16] S. Adachi, "Photoluminescence properties of Mn4+-activated oxide phosphors for use in white-LED applications: A review," Journal of Luminescence, vol. 202, pp. 263-281, 2018.
    [17] Hernandez-1996-Stoichiometry-structures-and-polymo.pdf
    [18] P. Lisboa-Filho et al., "Synthesis and characterization of Li2ZnTi3O8 spinel using the modified polymeric precursor method," Materials Chemistry and Physics, vol. 82, no. 1, pp. 68-72, 2003.
    [19] X. Lu, Y. Zheng, Q. Huang, and Z. Dong, "Structural dependence of microwave dielectric properties of spinel-structured Li 2 ZnTi 3 O 8 ceramic: crystal structure refinement and raman spectroscopy study," Journal of Electronic Materials, vol. 45, no. 2, pp. 940-946, 2016.
    [20] A. Lakshmanan, Luminescence and display phosphors: phenomena and applications. Nova Publishers, 2008.
    [21] M.-H. Du, "Using DFT methods to study activators in optical materials," ECS Journal of Solid State Science and Technology, vol. 5, no. 1, p. R3007, 2015.
    [22] G. Blasse and B. Grabmaier, "Luminescent Materials (Springer, Berlin, 1994)."
    [23] R. C. Ropp, Luminescence and the solid state. elsevier, 2013.
    [24] V. Chandra and B. Chandra, "Suitable materials for elastico mechanoluminescence-based stress sensors," Optical Materials, vol. 34, no. 1, pp. 194-200, 2011.
    [25] B. Henderson and G. F. Imbusch, Optical spectroscopy of inorganic solids. Oxford University Press, 2006.
    [26] R. B. King, Encyclopedia of inorganic chemistry. John Wiley & Sons, 1994.
    [27] H. Guo, H. Zhang, J. Li, and F. Li, "Blue-white-green tunable luminescence from Ba 2 Gd 2 Si 4 O 13: Ce 3+, Tb 3+ phosphors excited by ultraviolet light," Optics Express, vol. 18, no. 26, pp. 27257-27262, 2010.
    [28] G. L. Reddy, L. R. Moorthy, P. Packiyaraj, and B. Jamalaiah, "Optical characterization of YAl3 (BO3) 4: Dy3+–Tm3+ phosphors under near UV excitation," Optical Materials, vol. 35, no. 12, pp. 2138-2145, 2013.
    [29] A. Kenyon, "Recent developments in rare-earth doped materials for optoelectronics," Progress in Quantum Electronics, vol. 26, no. 4-5, pp. 225-284, 2002.
    [30] A. H. Kitai, Solid state luminescence: Theory, materials and devices. Springer Science & Business Media, 2012.
    [31] D. Vij, Luminescence of solids. Springer Science & Business Media, 2012.
    [32] S. ENERGY, "Program Requirements for solid state lighting luminaires," Eligibility Criteria–Version, vol. 1, no. 1, 2008.
    [33] J.-H. Ko and J. Ko, "Recent research trends in the development of new light sources for the backlight unit of liquid crystal display," Asian J. Phys, vol. 14, no. 3/4, pp. 231-237, 2005.
    [34] W. M. Yen and M. J. Weber, Inorganic phosphors: compositions, preparation and optical properties. CRC press, 2004.
    [35] C.-S. Huang, C.-L. Huang, Y.-c. Liu, S.-k. Lin, T.-S. Chan, and H.-W. Tu, "Ab Initio-Aided Sensitizer Design for Mn4+-Activated Mg2TiO4 as an Ultrabright Fluoride-Free Red-Emitting Phosphor," Chemistry of Materials, vol. 30, no. 5, pp. 1769-1775, 2018.
    [36] N. T. Tran, J. P. You, and F. G. Shi, "Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED," Journal of Lightwave Technology, vol. 27, no. 22, pp. 5145-5150, 2009.
    [37] C.-S. Huang, M.-C. Chang, C.-L. Huang, and S.-k. Lin, "Thin-Film Photoluminescent Properties and the Atomistic Model of Mg2TiO4 as a Non-rare Earth Matrix Material for Red-Emitting Phosphor," Journal of Electronic Materials, vol. 45, no. 12, pp. 6214-6221, 2016.
    [38] R. Cao et al., "Synthesis and luminescence properties of Li2SnO3:Mn4+ red-emitting phosphor for solid-state lighting," Journal of Alloys and Compounds, vol. 704, pp. 124-130, 2017.
    [39] R. Cao, M. Peng, E. Song, and J. Qiu, "High efficiency Mn4+ doped Sr2MgAl22O36 red emitting phosphor for white LED," ECS Journal of Solid State Science and Technology, vol. 1, no. 4, p. R123, 2012.
    [40] Y. Jin et al., "A deep red phosphor Li2MgTiO4:Mn4+ exhibiting abnormal emission: Potential application as color converter for warm w-LEDs," Chemical Engineering Journal, vol. 288, pp. 596-607, 2016.
    [41] J. Liang et al., "Mn4+-activated KLaMgWO6: A new high-efficiency far-red phosphor for indoor plant growth LEDs," Ceramics International, vol. 45, no. 4, pp. 4564-4569, 2019.
    [42] P. Klán and J. Wirz, Photochemistry of organic compounds: from concepts to practice. John Wiley & Sons, 2009.
    [43] H. Tang, R. Yang, and Y. Huang, "A novel red-emitting Eu 3+ -doped Na 2 MgSiO 4 phosphor with high intensity of 5 D 0 → 7 F 4 transition," Journal of Alloys and Compounds, vol. 714, pp. 263-269, 2017.
    [44] X. Lu, Y. Zheng, Q. Huang, and Z. Dong, "Structural Dependence of Microwave Dielectric Properties of Spinel-Structured Li2ZnTi3O8 Ceramic: Crystal Structure Refinement and Raman Spectroscopy Study," Journal of Electronic Materials, vol. 45, no. 2, pp. 940-946, 2015.
    [45] H. Taghipour-Armaki, E. Taheri-Nassaj, and M. Bari, "Effect of annealing time on structural and microwave dielectric characteristics of Li2ZnTi3O8 ceramics," Journal of Materials Research, vol. 30, no. 10, pp. 1619-1628, 2015.
    [46] W. Shu, L. Jiang, S. Xiao, X. Yang, and J. W. Ding, "GeO2 dopant induced enhancement of red emission in CaAl12O19:Mn4+ phosphor," Materials Science and Engineering: B, vol. 177, no. 2, pp. 274-277, 2012.
    [47] H. Guo, X. Huang, and Y. Zeng, "Synthesis and photoluminescence properties of novel highly thermal-stable red-emitting Na3Sc2 (PO4) 3: Eu3+ phosphors for UV-excited white-light-emitting diodes," Journal of Alloys and Compounds, vol. 741, pp. 300-306, 2018.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE