簡易檢索 / 詳目顯示

研究生: 王太伸
Wang, Tai-Shen
論文名稱: 以光調制光譜、光激發螢光光譜、拉曼光譜、穿透光譜、反射光譜研究GaAsSb/GaAs、ZnO、AlGaN/GaN、Oxide-GaAs材料的光學特性
Studies of the Optical Properties of GaAsSb/GaAs、ZnO、AlGaN/GaN、Oxide-GaAs by Photoreflectance、Photoluminescence、Raman、Transmission、Reflectance Spectroscopy
指導教授: 黃正雄
Hwang, Jenn-Shyong
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 146
中文關鍵詞: 氧化物-砷化鎵氮化鋁鎵/氮化鎵氧化鋅銻砷化鎵/砷化鎵反射光譜穿透光譜光調制光譜光激發螢光光譜拉曼光譜
外文關鍵詞: Oxide-GaAs, AlGaN/GaN, ZnO, GaAsSb/GaAs, Reflectance, Transmission, Raman, Photoreflectance, Photoluminescence
相關次數: 點閱:136下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用光譜技術:光調制光譜(Photoreflectance,PR)、光激發螢光光譜(Photoluminescence,PL)、拉曼光譜(Raman)、穿透光譜(Transmission)與反射光譜(Reflectance),研究GaAsSb/GaAs、ZnO(塊材與磊晶層)、AlGaN/GaN與Oxide-GaAs四種半導體微結構的光學特性。

    GaAsSb/GaAs的半導體結構中,因GaAsSb的組成與厚度的不同而有不同程度的應力,導致不同大小的能隙值與價帶分裂,藉由光調制光譜可得到其能隙值與價帶分裂值並進一步求得樣品所含的應力及應力被釋放的程度,利用此關係可計算出GaAsSb/GaAs多層量子井(multiple quantum wells,MQWs)中受同調應力的GaAsSb能隙。其次,由光激發螢光光譜求出MQWs的電子躍遷能量,我們發現其能隙值大於電子躍遷能量,證實具同調應力的GaAsSb/GaAs MQWs之能帶排列為第二型排列(type-II band alignment)。同樣的,從不受應力的GaAsSb/GaAs結構的PR光譜中,可發現有二維電子氣(2DEG)的存在,且其能量小於GaAsSb的能隙,因此可確定其能帶排列也是type-II。其次利用拉曼光譜分析樣品受應力的影響,確定樣品的缺陷量與應力釋放程度與PR光譜所得的結果是一致的。

    我們利用光調制光譜研究Oxide-GaAs的界面態密度。首先根據PR訊號強度和激發光所產生的光壓Vs之間的關係並配合電流傳輸理論,導出PR訊號強度和激發光強度的關係;其次假設界面的電荷分佈為單側陡接面近似,導出界面電場強度的平方與激發光強度的關係式。實驗時,量取各不同激發光強度下的PR光譜,擷取訊號的強度,並由譜圖中的Franz-Keldysh震盪(FKOs)求取樣品的界面電場,如此可得PR的訊號強度相對於激發光強度的曲線以及界面電場的平方相對於激發光強度的曲線,再分別與理論所推導的關係式做最小平方擬合,即可求得計算界面態密度所需的參數,進一步求得Oxide-GaAs的界面態密度。兩種擬合所得的界面態密度相近,且得知利用FKOs求出的電場為界面電場同時亦為樣品中的最大電場。

    對於塊材ZnO、Al2O3/ZnO/sapphire及ZnO/GaN/sapphire等微結構的樣品,Raman光譜能觀察到ZnO、sapphire、GaN的訊號,其中Al2O3/ZnO/sapphire樣品受到Al2O3層的影響,ZnO的訊號變的相當微弱,其他樣品的ZnO訊號中,與應力相關的訊號E2-high皆在同一位置,可證實樣品的應力完全被釋放,而與缺陷有關的訊號A1-LO,其強弱可用以比較樣品中所含缺陷的多寡。在PR光譜中我們觀測到ZnO的激子訊號,在塊材ZnO樣品載子濃度不同會造成PR訊號的改變,而較高載子濃度的樣品其Franz-Keldysh Oscillations (FKOs) 的特徵消失、激子訊號變寬。PL光譜可觀察到束縛激子與束縛激子減掉一個聲子的訊號,兩個訊號的差距68 meV為聲子的能量,由Raman光譜可確定此聲子為A1-LO 574 cm-1(71 meV)訊號,另外可觀察到深層缺陷能階能量約在2.0~2.2 eV,主要是來自於氧空缺形成的缺陷。由穿透光譜可以觀察到淺層缺陷及反射光譜可以觀察到激子、淺層缺陷以及與聲子有關的訊號,且激子訊號的位置與PR及PL是一致的。此部分的研究主要證明Raman、PR、PL、穿透及反射光譜可觀測到激子、缺陷與聲子的訊號,提供進一步研究ZnO各種同質或異質結構的光電特性的參考。

    雖然AlGaN/GaN樣品為非故意摻雜但其PR光譜仍可觀察到內建電場及二維電子氣的特徵,並可藉此畫出AlGaN/GaN界面的能帶圖,同時確定其在界面處的費米能階與GaN的導帶是對齊的。藉由比較存在及不存在應力的AlGaN的能隙值,我們發現對存在應力的樣品,其Al組成比在利用XRD推算時是被低估的。經由不同光譜技術的互相對應可以確定訊號為激子、缺陷及聲子,雖然AlGaN的訊號在吸收譜發生與參考論文相同的Stokes-shift現象,但其訊號來源必須由更進一步的實驗來確定。在穿透光譜、反射光譜可觀察到干涉震盪特徵,由此特徵可求出樣品中的磊晶層厚度,並確定較厚的磊晶層主宰了干涉震盪特徵。

    This study employs spectroscopic techniques to study the electro-optical properties of semiconductor microstructures GaAsSb/GaAs, ZnO, AlGaN/GaN, and Oxide-GaAs. In GaAs1-xSbx/GaAs, strain varies with the mole fraction x and the thickness of the GaAsSb layer. The strain and the degree of the strain relaxation can be estimated from the band gap and valence band splitting obtained from PR spectra, allowing the determination of the band gap of the GaAsSb layer under coherent strain in the MQWs. The observed band gap energy estimated is greater than the electronic transition energy in the PL spectra, implying the band alignment of GaAsSb/GaAs MQWs must be type-II. The PR spectra of the unstrained GaAsSb/GaAs structures contain the transition energies which are lower than the band gap energy of GaAsSb indicating the existence of two dimensional electron gases (2DEG) and confirming the type II band alignment again. The defects and degree of strain release obtained from Raman spectra are in good agreement with PR studies.

    This study also employs PR spectroscopy to investigate the interface state density and charge distribution across the interface of a series of oxide-GaAs samples. The relation between the intensity of the PR signal and pump beam flux is derived from the photovoltaic effect and theory of transmission current. Applying the one-side abrupt-junction approximation for the charge distribution across the interface, the relation between the square of the built-in electric field and pump beam intensity can also be derived. The intensities of PR signals and built-in electric fields are obtained from the FKOs in the PR spectra under various pump beam intensity. Curves of the PR intensity and square of electric field as function of pump beam intensity are obtained. The curves are least-squares-fitted to the theoretical relationship derived above, and the barrier height and parameter used to estimate the interface state density can be obtained. The interface state density of oxide-GaAs obtained from the PR signal and from the squares of the built-in electric field are approximately the same. The electric field obtained from FKOs of the PR spectra is proved the maximum electric field in the sample and the charge distribution across the interface is well described by the one-side abrupt-junction approximation.
    Raman, PR, PL, reflectance, and transmittance spectroscopy are used to study the electro-optical properties of ZnO, Al2O3/ZnO/sapphire, and ZnO/GaN/sapphire microstructures. The peak positions of the strain related Raman peak, E2 are almost the same in all samples, implying that ZnO is completely relaxed and strain-free. The relative defect density of defects of the samples is determined from the intensity of A1-LO mode. In order to measure the PR spectra of the microstructures of wide band gap materials ZnO and GaN, a new PR spectrometer is constructed using optical components that do not absorb ultra violet. A free exciton signal is observed in the PR spectra of ZnO. The PL spectra at room temperature contain two signals, corresponding to the bound exciton, and the bound exciton less an A1-LO phonon. The energy difference between the two signals is around 68 meV, corresponding to the A1-LO mode observed in Raman spectra. A signal from the deep defect level due to oxygen vacancy also appears in the PL spectra of various microstructures, ranging from 2.0 to 2.2 eV. A signal from shallow defect level can be observed in the spectra of reflectance and transmittance, and a signal corresponding to a free exciton and that plus an A1-LO phonon appears in the reflectance spectra. The results are in good agreement with the PR and PL spectra. In summary, in the spectroscopic investigation of ZnO microstructures, Raman spectra can be used to study the phonon or lattice dynamics; PL spectra the bound exciton and phonon; PR spectra the free exciton; transmittance spectra defects while reflectance spectra can be used to study the free exciton and defects.

    For unintentionally doped AlGaN/GaN samples, the band gap and built-in electric field can be deduced from their PR spectra, which also exhibit a 2DEG feature. Based on the band gap energy, built-in electric field, and transition energy of the 2DEG, the band alignment diagram can be deduced, and the Fermi level is found to close the conduction band of the GaN at the interface. By comparing the band gap of the strained and unstrained AlGaN samples, it is found that the estimates of Al content previous obtained by X ray diffraction (XRD), of strained samples are too low. The signals refer to exciton, defect, or phonon can be confirmed by the spectroscopic techniques. Although the Stokes-shift phenomenon appears in the absorption spectra as the reference, the source of the signals must be verified by the further experiment. The thicknesses of the epilayers can be determined by the oscillation induced by the interference in the transmittance and reflectance spectra. Hence the period of the oscillation is dominated by the thicknesses of thicker epilayer is realized.

    第一章 緒論………………………………………………………1 第二章 實驗機制與設備…………………………………………9 2-1 光調制光譜…………………………………………………9 2-2 光激發螢光光譜……………………………………………12 2-3 拉曼光譜……………………………………………………13 2-4 穿透光譜……………………………………………………14 2-5 反射光譜……………………………………………………15 第三章 GaAsSb/GaAs光學特性研究……………………………20 3-1 樣品結構……………………………………………………20 3-2 應變對能帶的影響…………………………………………20 3-3 臨界厚度……………………………………………………22 3-4 未受應力GaAsSb能隙………………………………………23 3-5 GaAsSb價帶分裂、應變釋放………………………………24 3-6 GaAsSb/GaAs MQWs能帶排列……………………………26 3-7 未受應力GaAsSb/GaAs能帶排列…………………………28 3-8 未受應力GaAsSb表面電場…………………………………31 3-9 GaAs的雜質缺陷訊號………………………………………31 3-10 GaAsSb的Raman訊號分析…………………………………31 3-11 結論…………………………………………………………33 第四章 Oxide-GaAs界面特性研究………………………………55 4-1 樣品結構……………………………………………………55 4-2 電流傳輸、光壓效應………………………………………55 4-3 P-N接面及單側陡接面近似…………………………………57 4-4 PR光譜分析…………………………………………………60 4-5 訊號強度隨光強度改變的擬合……………………………60 4-6 單側陡接面近似的擬合……………………………………61 4-7 結論…………………………………………………………62 第五章 ZnO光學特性研究………………………………………71 5-1 樣品結構……………………………………………………71 5-2 能帶圖………………………………………………………71 5-3 Raman光譜分析……………………………………………72 5-4 PR光譜分析…………………………………………………74 5-5 PL光譜分析…………………………………………………76 5-6 穿透光譜分析………………………………………………77 5-7 反射光譜分析………………………………………………78 5-8 結論…………………………………………………………79 第六章 AlGaN光學特性研究……………………………………92 6-1 樣品結構……………………………………………………92 6-2 能帶圖………………………………………………………92 6-3 Raman光譜分析……………………………………………93 6-4 PR光譜分析…………………………………………………94 6-5 PL光譜分析…………………………………………………97 6-6 穿透光譜分析………………………………………………97 6-7 反射光譜分析………………………………………………100 6-8 結論…………………………………………………………100 第七章 總結………………………………………………………118 參考文獻…………………………………………………………120

    [1.1] K. Onabe, Y. Tashiro, and Y. Ide, Sur. Sci. 174, 401, (1986).
    [1.2] S. Yamada, T. Fukui, and A. Sugimura, Sur. Sci. 174, 444, (1986).
    [1.3] R. Dingle, W. Wiegman, and C. H. Henry, Phys. Rev. Lett. 33, 827, (1974).
    [1.4] A. C. Wright and J. O. Williams, Mat. Letts. 3, 80, (1985).
    [1.5] H. Shen, P. Parayanthal, Y. F. Liu, and F. H. Pollak, Rev. Sci. Intrum. 58, 1429, (1987).
    [1.6] F. Bassni and G. P. Parravicini, Electric State and Opitical Transition in Solid (America Press, 1975) and D. E. Aspnes, in Handbook on Semiconductors, ed. By T. S. Moss (North-Holland, New York, Vol. 2, p. 109, 1980).
    [1.7] M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969).
    [1.8] H. Shen, S. H. Pan, F. H. Pollak, M. Dutta and T. R. AuCoin, Phys. Rev. B 36, 9384, (1987).
    [1.9] V. L. Alperovich, A. S. Jaroshevich, D. I. Lubyshev, V. P. Migal, V. V. Preobrazhenskii and B. R. Semjagin, Superlattices and Microstructures, 10, 131, (1991).
    [1.10] L. T. Canham, Appl. Phys. Lett. 57, 1046, (1990).
    [1.11] D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, N. La Scala, Jr., and P. Basmaji, Appl. Phys. Lett. 68, 205, (1996).
    [1.12] N. N. Ledentsov, V. A. Shchukin, M. Grundmann, N. Kirstaedter, J. Bohrer, O. Schmidt, D. Dimberg, V. M. Ustinov, A. Yu. Egorov, A. E. Zhukov, P. S. Kop”ev, S. V. Zaitsev, N. Yu. Gordeev, Zh. I. Alferov, A. I. Borovkov, A. O. Kosogov, S. S. Ruvimov, P. Werner, U. Gosele, and J. Heydenreich, Phys. Rev. B 54, 8743, (1996).
    [1.13] D. I. Lubyshev, P. P. Gonzalez-Borrero, Jr., E. Petitprez, and P. Basmaji, J. Vac. Sci. Technol. B 14, 2212, (1996).
    [1.14] M. Sydor, and A. Badakhshan and J. R. Engholm, Appl. Phys. Lett. 59, 677, (1991).
    [1.15] H. K. Lipsanen and V. M. Airaksinen, Appl. Phys. Lett. 63, 2863, (1993).
    [1.16] R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B 37, 4044, (1988).
    [1.17] G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl. Phys. 86, 1765, (1999).
    [1.18] J. S. Hwang, S. L. Tyan, W. Y. Chou, M. L. Lee, H. H. Lin, T. L. Lee, W. David, and Z. Hang, Appl. Phys. Lett. 64, 3314, (1994).
    [1.19] E. E. Mendez, L. L. Chang, G. Landgren, R. Ludeke, L. Esaki and F. H. Pollak, Phys. Rev. Lett. 46, 1230, (1981).
    [1.20] H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts. 52, 2058, (1988).
    [1.21] D. E. Aspnes, in M. Balkanski, Surf. Sci., 37, 418, (1973).
    [1.22] O. J. Glembocki, N. Bottka and J. E. Furneaux, J. Appl. Phys. 57, 432, (1985).
    [1.23] S. Y. Chung, D. Y. Lin, Y. S. Huang and K. K. Tiong, Semicond. Sci. Technol. 11, 1850, (1996).
    [1.24] H. Yoshikawa and S. Adachi, Jpn. J. Appl. Phys. Part 1 35, 5946, (1996).
    [1.25] O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston, Semiconductors and Semimetals, (Academic Press, New York, 36, 221-292, 1992).
    [1.26] Y. Yin, H. M. Chen, F. H. Pollak, Y. Chen, P. A. Montano, J. M. Woodall, P. D. Kirncher, and D. Pettit, Proceedings of the 20th International Conference on the Physics of Semiconductors, Greece, (1990).
    [1.27] F. H. Pollak and H. Shen, in Proceeding of the Society of Photooptical Instrumentation Engineers (SPIE, Bellingham, 1037, 16, 1898).
    [1.28] M. Erman, J. B. Theetan, P. Frijlink, S. Gaillard, F. J. Hia and C. Alibert, J. Appl. Phys. 56, 3214, (1984).
    [1.29] C. Alibert, S. Gaillard, J. A. Brum, G. Bastard, P. Frijlink and M. Erman, Solid state Commum. 53, 457, (1985).
    [1.30] K. Capuder, P. E. Norris, H. Shen, Z. Hang and F. H. Pollak, J. Electron. Mater. 19, 295, (1990).
    [1.31] G. Blume, T. J. Hosea, and S. J. Sweeney, Phys. Stat. Sol. (a) 202, 1244, (2005).
    [1.32] R. Kudrawiec, K. Ryczko, J. Misiewicz, H. B. Yuen, S. R. Bank, M. A. Wistey, H. P. Bae, and James S. Harris, Jr, Appl. Phys. Lett. 86, 141908, (2005).
    [1.33] C. M. Lai, F. Y. Chang, C. W. Chang, C. H. Kao, H. H. Lin, and G. J. Jan, Appl. Phys. Lett. 82, 3895, (2003).
    [1.34] Z. C. Niu, X. H. Xu, H. Q. Ni, Y. Q. Xu, Z. H. He, Q. Han, and R. H. Wu, J. Cryst. Growth 278, 558, (2005).
    [1.35] Y. S. Chiu, M. H. Ya, W. S. Su, and Y. F. Chen, J. Appl. Phys. 92, 5810, (2002).
    [1.36] R. Kudrawiec, E. –M. Pavelescu, J. Andrzejewski, J. Misiewicz, A. Gheorghiu, T. Jouhti, and M. Pessa, J. Appl. Phys. 96, 2909, (2004).
    [1.37] Y. L. Huang, P. Chang, Z. K. Yang, Y. J. Lee, H. Y. Lee, H. J. Liu, J. Kwo, J. P. Mannaerts, and M. Hong, Appl. Phys. Lett. 86, 191905, (2005).
    [1.38] Z. Yu, C. D. Overgaard, R. Droopad, M. Passlack, and J. K. Abrokwah, Appl.Phys. Lett. 82, 2978, (2003).
    [2.1] N. P. Lakshmi and F. G. Thomas, Appl. Phys. Lett. 61, 1081, (1992).
    [2.2] O. J. Glembocki, B. V. Shanabrook, in D.G. Seiler and C. Boston, Semiconductors and Semimetals, (Academic Press, New York, 36, 221-292, 1992).
    [2.3] H. Shen, Z. Hang, S. H. Pan, F. H. Pollak, and J. M. Woodall, Appl. Phys. Letts., 52, 2058, (1988).
    [2.4] M. Cardona, in Modulation Spectroscopy, (Academic, New York, 1969).
    [2.5] D. E. Aspnes, Phys. Rev. B 10, 4228, (1974).
    [2.6] T. M. Hsu, Y. C. Tien, N. H. Lu, S. P. Tsai, D. G. Liu and C. P. Lee, J. Appl. Phys. 72, 1065, (1992).
    [2.7] N. Bottka, D. K. Gaskill, R. J. M. Griffiths, R. R. Bradley, T. B. Joyce, C. Ito and D. McIntyre, J. Cryst. Growth 93, 481, (1988).
    [2.8] D. E. Aspnes and A. A. Studna, Phys. Rev. B 7, 4605, (1973).
    [2.9] J. S. Hwang, Y. C. Wang, W. Y. Chou, S. L. Tyan, M. Hong, J. P. Mannaerts, and J. Kwo, J. Appl. Phys. 83, 2857, (1998).
    [2.10] C. J. Sandroff, R. N. Nottenburg, J.-C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33, (1987).
    [2.11] A. A. Ogwu, E. Bouquerel, O. Ademosu, S. Moh, E Crossan and F. Placido, J. Phys. D: Appl. Phys., 38 ,266-271, (2005).
    [2.12] K. Prabakar, Choongmo Kim, and Chongmu Lee, Cryst. Res. Technol. 40, 1150-1154, (2005).
    [2.13] K. P. Korona, A. Wysmołek, K. Pakuła, R. Ste˛pniewski, J. M. Baranowski, I. Grzegory, B. Łucznik, M. Wro´blewski, and S. Porowski, Appl. Phys. Lett. 69, 788, (1996).
    [3.1] T. C. McGlinn, T. N. Krabach, and M. V. Klein, Phys. Rev. B 33, 8396, (1986).
    [3.2] S. L. Chuang, Physics of Optoelectronic Devices, (Wiley, New York, 1995).
    [3.3] J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118, (1974).
    [3.4] B. P. Rodrguez and J. M. Millunchick, J. Appl. Phys. 100, 044503, (2006).
    [3.5] H. Ito and T. Ishibashi, Jpn. J. Appl. Phys. 25, L421, (1986).
    [3.6] R. E. Nahory, M. A. Pollack, J. C. DeWinter, and K. M. Williams, J. Appl. Phys. 48, 1607, (1977).
    [3.7] S. R. Johnson, C. Z. Guo, S. Chaparro, Yu. G. Sadofyev, J. Wang, Y. Cao, N. Samal, J. Xu, S. Q. Yu, D. Ding, and Y. H. Zhang, J. Cryst. Growth 251, 521, (2003).
    [3.8] A. D. Prins, D. J. Dunstan, J. D. Lambkin, E. P. O’Reilly, A. R. Adams, R. Pritchard, W. S. Truscott, and K. E. Singer, Phys. Rev. B 47, 2191, (1993).
    [3.9] M. Yamada, T. Anan, K. Tokutome, K. Nishi, A. Gomyo, and S. Sugou, Conference Proceedings LEOS, P. 149, (1998).
    [3.10] M. Dinu, J. E. Cunningham, F. Quochi, and J. Shah, J. Appl. Phys. 94, 1506, (2003).
    [3.11] G. Liu, S. L. Chuang, and S. H. Park, J. Appl. Phys. 88, 5554, (2000).
    [3.12] W. W. Chow, O. B. Spahn, H. C. Schneider, and J. F. Klem, IEEE J. Quantum Electron. 37, 1178, (2001).
    [3.13] C. G. Van der Walle, Phys. Rev. B 39, 1871, (1989).
    [3.14] G. Ji, S. Agarwala, D. Huang, J. Chyi, and H. Morkoc, Phys. Rev. B 38, 10571, (1988).
    [3.15] M. Peter, K. Winkler, M. Maier, N. Herres, J. Wagner, D. Fekete, and K. H. Bachem, Appl. Phys. Lett. 67, 2639, (1995).
    [3.16] R. Teissier, D. Sicault, J. C. Harmand, G. Ungaro, G. Le Roux, and L. Largeau, J. Appl. Phys. 89, 5473, (2001).
    [3.17] Y. Kawamura, M. Amano, K. Ouchi, and N. Inoue, Jpn. J. Appl. Phys. 42, 4288, (2003).
    [3.18] M. Sydor, J. Angelo, and J. Wilson, Phys. Rev. B 40, 8473, (1989).
    [3.19] R. L. Tober and J. D. Bruno, J. Appl. Phys. 68, 6388, (1990).
    [3.20] O. J. Glembocki, N. Bottka, and J. E. Furneaux, J. Appl. Phys. 57, 432, (1985).
    [3.21] 李典樺, “利用光調制光譜及拉曼光譜研究砷化鎵表面-本徵-N+結構之表面特性”, 國立成功大學物理研究所, 碩士論文, 民國95年.
    [3.22] T. Toda, F. Nishino, A. Kato, T. Kambayashi, Y. Jinbo, and N. Uchitomi, Physica B 376, 602, (2006).
    [4.1] H. Hovel, Semiconductors and Semimetals (Academic, New York, 1975).
    [4.2] X. Yin, H.-M. Chen, F. H. Pollak, Y. Chan, P. A. MonTano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol. A 10, 131, (1992).
    [4.3] H. Shen and M. Dutta, J. Appl. Phys. 78, 2151, (1995).
    [4.4] G. S. Chang, W. C. Hwang, Y. C. Wang, Z. P. Yang, and J. S. Hwang, J. Appl. Phys. 86, 1765, (1999).
    [4.5] J. S. Hwang, G. S. Chang, W. C. Hwang, and W. J. Chen, J. Appl. Phys. 89, 1771, (2001).
    [4.6] T. Kanata, M. Matsunaga, H. Takakura, Y. Hamakawa, and T. Nishino, Proc. SPIE 1286, 56, (1990).
    [4.7] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and M. Sergent, (Science, Washington DC, 283, 1897, 1999).
    [4.8] J. M. Woodall, P. D. Kirchner, J. L. Freeouf, and A. C. Warren, Solid-State Electron. 33, 53, (1990).
    [4.9] M. Hecht, Phys. Rev. B 41, 7918, (1990).
    [4.10] H. Shen, S. H. Pan, Z. Hang, J. Leng, F. H. Pollak, J. M. Woodall, and R. N. Sacks, Appl. Phys. Lett. 53, 1080, (1988).
    [4.11] X. Yin, H.-M. Chen, F. H. Pollak, Y. Chen, P. H. Montano, P. D. Kirchner, G. D. Pettit, and J. M. Woodall, J. Vac. Sci. Technol. A 10, 131, (1992).
    [4.12] J. S. Hwang, C. C. Chang, M. F. Chen, C. C. Chen, K. I. Lin, F. C. Tang, M. Hong and J. Kwo, J. Appl. Phys. 94, 348, (2003).
    [4.13] D. A. Neamen, Semiconductors Physics and Devices (McGraw-Hill, 2003).
    [4.14] R. N. Bhattacharya, H. Shen, P. Paraynthal, F. H. Pollak, T. Coutts, and H. Aharoni, Phys. Rev. B 37, 4044, (1988).
    [4.15] H. Shen, and F. H. Pollak, Phys. Rev. B 42, 7097, (1990).
    [5.1] Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301, (2005).
    [5.2] C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, J. Cryst. Growth 282, 112, (2005).
    [5.3] S. Ozaki, T. Mishima, and S. Adachi, Jpn. J. Appl. Phys. 42, 5465, (2003).
    [5.4] D. J. Thomas: J. Phys. Chem. Solids 15, 86, (1960).
    [5.5] J. J. Hopfield: J. Phys. Chem. Solids 15, 97, (1960).
    [5.6] D. C. Reynolds, D. C. Look, B. Jogai, C. W. Litton, G. Cantwell and W. C. Harsch: Phys. Rev. B 60 , 2340, (1999).
    [5.7] W. R. L. Lambrecht, A. V. Rodina, S. Limpijumnong, B. Segall, and B. K. Meyer, Phys. Rev. B 65, 075207, (2002).
    [5.8] Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, Appl. Phys. Lett. 78, 1469, (2001).
    [5.9] A. E. Rakhshani, J. Kokaj, J. Mathew, B. Peradeep, Appl. Phys. A 86, 377, (2007).
    [5.10] N. Ashkenov, B. N. Mbenkum, C. Bundesmann, V. Riede, M. Lorenz, D. Spemann,E. M. Kaidashev, A. Kasic, M. Schubert, M. Grundmann, G. Wagner, H. Neumann, V. Darakchieva, H. Arwin, and B. Monemar, J. Appl. Phys. 93, 126, (2003).
    [5.11] M. Rajalakshmi, A. K. Arora, B. S. Bendre, and S. Mahamuni, J. Appl. Phys. 87, 2445, (2000).
    [5.12] J. M. Calleja and M. Cardona, Phys. Rev. B 16, 3753, (1977).
    [5.13] Hyo-Won Suh, Gil-Young Kim, Yeon-Sik Jung, Won-Kook Choi, and Dongjin Byun, J. Appl. Phys. 97, 044305, (2005).
    [5.14] D. Stichtenoth, C. Ronning, T. Niermann, L.Wischmeier, T. Voss, Chung-Jen Chien, Pai-Chun Chang, and Jia Grace Lu, Nanotechnology 18, 435701, (2007).
    [5.15] Fu Hai Su, Wen Jie Wang, Kun Ding, Guo Hua Li, Yuangfang Liu, Alan G. Joly, and Wei Chen, Journal of Physics and Chemistry of Solids 67, 2376, (2006).
    [5.16] S. F. Chichibu, A. Uedono, A. Tsukazaki, T. Onuma, M. Zamfirescu, A. Ohtomo, A. Kavokin, G. Cantwell, C. WLitton, T. Sota, and M. Kawasaki, Semicond. Sci. Technol. 20, S67, (2005).
    [5.17] R. Kudrawiec, G. Sek, J. Misiewicz, R. Paszkiewicz, B. Paszkiewicz, and M. Tlaczala, Materials Science and Engineering B 96, 284, (2002).
    [5.18] W. Shan, W. Walukiewicz, J. W. Ager III, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, and J. J. Song, Appl. Phys. Lett. 86, 191911, (2005).
    [5.19] A. Jain, P. Sagar, and R. M. Mehra, Materials Science-Poland 25, 233, (2007).
    [5.20] Lukas Schmidt-Mende, and Judith L. MacManus-Driscoll, Materials Today 10, 40, (2007).
    [5.21] Z. C. Feng, J. W. Yu, J. B. Wang, R. Varatharajan, B. Nemeth, J. Nause, I. Ferguson, W. Lu, and W. E. Collins, Materials Science Forum 527-529, 1567, (2006).
    [5.22] S. F. Chichibu, A. Tsukazaki, M. Kawasaki, K. Tamura, Y. Segawa, T. Sota, and H. Koinuma, Appl. Phys. Lett. 80, 2860, (2002).
    [5.23] V. Srikant and D. R. Clarke, J. Appl. Phys. 83, 10, (1998).
    [6.1] G. D. Chen, M. Smith, J. Y. Lin, H. X. Jiang, Su-Huai Wei, M. Asif Khan and C. J. Sun, Appl. Phys. Lett. 68, 20, (1996).
    [6.2] Hiroshi Harima, J. Phys.: Condens. Matter 14, R967–R993, (2002).
    [6.3] R. Kudrawiec, M. Syperek, J. Misiewicz, R. Paszkiewicz, B. Paszkiewicz, M. Tlaczala, Superlattices and Microstructures 36, 633, (2004).
    [6.4] A. Fischer, H. Kuhne, and H. Richter, Phys. Rev. Lett. 73, 2712, (1994).
    [6.5] S. C. Jain, M. Willander, J. Narayan, and R. Van Overstraeten, J. Appl. Phys. 87, 965, (2000).
    [6.6] Jayeeta Bhattacharyya and Sandip Ghosh, phys. stat. sol. (a) 204, 439-446, (2007).
    [6.7] R. Kudrawiec,a_ M. Syperek, J. Misiewicz, M. Rudziński, A. P. Grezegorczyk, P. R. Hageman, and P. K. Larsen, Appl. Phys. Lett. 87, 153502, (2005).
    [6.8] C. Liu, S. Stepanov, A. Gott, P. A. Shields, E. Zhirnov, W. N. Wang, E. Steimetz, and J. T. Zettler, phys. stat. sol. (c) 3, 1884-1887, (2007).
    [6.9] Sandip Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, Appl. Phys. Lett. 80, 413, (2002).
    [6.10] J. F. Muth, R. M. Kolbas, A. K. Sharma, S. Oktyabrsky, and J. Narayan, J. Appl. Phys. 85, 7884, (1999).
    [6.11] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, Jr. B. P. Keller, U. K. Mishra, and S. P. DenBaars, Appl. Phys. Lett. 71, 2572, (1997).
    [6.12] W. Shan, A. J. Fischer, S. J. Hwang, B. D. Little, R. J. Hauenstein, X. C. Xie, D. S. Kim, B. Goldenberg, R. Horning, and S. Krishnankutty, W. G. Perry, M. D. Bremser, and R. F. Davis, J. Appl. Phys. 83 ,455, (1998).
    [6.13] Y. Chen, N. T. Tuan, Y. Segawa, H. Ko, S. Hong, and T. Yao, Appl. Phys. Lett. 78, 1469, (2001).
    [6.14] H. Jiang, G. Y. Zhao, H. Ishikawa, T. Egawa, T. Jimbo, and M. Umeno, J. Appl. Phys. 89 ,1046, (2001).

    下載圖示 校內:2010-09-02公開
    校外:2010-09-02公開
    QR CODE