| 研究生: |
李安凱 Li, An-Kai |
|---|---|
| 論文名稱: |
遞迴式架構為基礎之正交鏡像濾波器快速演算法設計與應用 Design and Application of Fast Algorithm of Recursive-Structure-Based Quadrature Mirror Filter |
| 指導教授: |
雷曉方
Lei, Sheau-Fang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 遞迴式架構 、正交鏡像濾波器 、數位全球無線電廣波系統 |
| 外文關鍵詞: | recursive structure, QMF, DRM |
| 相關次數: | 點閱:198 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文提出兩個遞迴式架構為基礎的分析與合成正交鏡像濾波器(QMF)的快速演算法,在數位廣波(DRM)中的各種音訊編碼會使用到此種濾波器。在所提出的第一種快速演算法中,透過輸入訊號的重新排列可以將遞迴核心的係數合併以及常數化,再搭配CSD乘法器技術可使得此核心的乘法運算量以及係數使用量大幅降低。在所提出的第二種快速演算法中,透過輸入訊號的折疊使得訊號在遞迴核心內遞迴次數降低,進而有效降低乘法運算量以及加法運算量。遞迴式的核心架構使得此二種快速演算法有較大的應用彈性,本論文以其為核心應用在等頻寬濾波器組上,使分頻數可以為奇數以及偶數,比起以FFT為核心的平行架構有著更好的應用範圍。因此,在未來的DRM以及分頻濾波器應用中,本論文可提供更多的選擇性。
This thesis proposed a novel fast algorithm and common structure design of analysis and synthesis quadrature mirror filterbanks (AQMF, SQMF) on the spectral band replication in digital radio mondiale (DRM). Based on recent Lai et al.’s concept, an extended issue is addressed form the view point of recursively computing the AQMF and SQMF coefficients. The proposed-I method also combines with the lifting scheme algorithm. The results show that the proposed AQMF algorithm has a great improvement on computational complexity. For the recursive kernel computation (N=64), the proposed method has, respectively, 46.38% of multiplication reductions and 20.46% of addition reductions which can cover the shortcoming of the proposed SQMF. It would be more efficient and more suitable than previous works for DRM applications. The proposed-II recursively computational method not only combines with the lifting scheme algorithm but also employs the fixed-coefficient concept to introduce the technique of canonical signed digit (CSD) multiplication. The results show that the proposed QMFs algorithm has a great improvement on multiplication of computational complexity. For the recursive kernel computation (N=64), the proposed method can transfers the constant multiplication into addition by using CSD technique which brings a great improvement in the complexity of multiplication and the requirement of coefficient. It would be more efficient and more suitable than previous works for DRM applications.
[1]. ETSI ES 201 980 V3.2.1, Digital Radio Mondiale (DRM); System Specification, France: European Telecommunications Standards Institute, 2012.
[2]. ISO/IEC 14496-3:2005, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information—Part 3: Advanced Audio Coding (AAC), Subpart 4: General Audio Coding (GA)—AAC, TwinVQ, BSAC,” 2005.
[3]. Information Technology-Coding of Audio-Visual Objects-Part 3 Audio, Amendment 1 Bandwidth Extension, ISO IEC 14496-3 2001 Amd. 1 2003, Nov. 2003.
[4]. ISO/IEC 14496-3:2005/FDAM9, “Information Technology—Generic Coding of Moving Pictures and Associated Audio Information—Part 3: Advanced Audio Coding (AAC), Amendment 9: Enhanced Low Delay AAC,” 2007.
[5]. http://www.ysps.tp.edu.tw/seed/Detail.asp?TitleID=501
[6]. “工農學報,” 台北市立松山高級工農職業學校, 2009.
[7]. Noll, P., "MPEG digital audio coding," Signal Processing Magazine, IEEE , vol.14, no.5, pp.59, 81, Sep 1997.
[8]. 音視訊處理實驗室, “實習單元-1.1 遮罩效應Masking Effect,” 國立中央大學, 2009.
[9]. 張金山, “DRM數位廣播帶外公率降低研究,” 大同大學, 通訊工程研究所, 碩士論文, July 2007.
[10]. S-C Lai, M-K Lee, A-K Li, C-H Luo, and S-F Lei, “An Innovative Fast Algorithm and Structure Design for Analysis and Synthesis Quadrature Mirror Filterbanks on the SBR in DRM”, IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 60, no. 11, pp. 806–810, Nov. 2013.
[11]. Petrovsky, A., M. Parfieniuk, and K. Bielawski. "Psychoacoustically Motivated Non-uniform Cosine Modulated Polyphase Filter Bank." 2nd International Workshop on Spectral Methods and Multirate Signal Processing (SMMSP 2002), Toulouse, France. 2002.
[12]. I. Daubechies and W. Sweldens, “Factoring wavelet transforms into lifting steps,” Journal of Fourier Analysis and Applications, vol. 4, no. 3, pp. 247-269, 1998.
[13]. S. Oraintara, Y. J. Chen and T. Q. Nguyen, “Integer fast Fourier transform," Signal Processing, IEEE Transactions on, vol. 50, no. 3, pp. 607–618, Mar 2002.
[14]. G. Goertzel, "An algorithm for the evaluation of finite trigonometric series," American mathematical monthly, pp. 34-35, 1958.
[15]. A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing. Upper Saddle River, New Jersey: Prentice-Hall, Inc., 1989.
[16]. R. X. Yin and W. C. Siu, "A new fast algorithm for computing prime-length DCT through cyclic convolutions," Signal Processing, vol. 81, pp. 895-906, May 2001.
[17]. 江鎧均, “適用於正、逆改良型離散正餘弦轉換之可調式固定係數架構設計,” 國立成功大學, 電機工程學系, 碩士論文, July 2011.
[18]. 具再熙, "數位訊號處理,使用Matlab," 台灣: 儒林, 2007.
[19]. J. F. Yang and C. P. Fan, "Recursive discrete cosine transforms with selectable fixed-coefficient filters," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 46, pp. 211-216, 1999.
[20]. K. K. Parhi, VLSI Digital Signal Processing Systems Design and Implementation. New York: John Wiley and Sons. Inc., 1999.
[21]. Galijašević, Enisa, and Jörg Kliewer. "Design of allpass-based non-uniform oversampled DFT filter banks." Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International Conference on. Vol. 2. IEEE, 2002.
[22]. S. C. Lai, S. F. Lei, W. H. Juang, and C. H. Luo, "A Low-Cost, Low-Complexity, and Memory-Free Architecture of Novel Recursive DFT and IDFT Algorithms for DTMF Application," Circuits and Systems II: Express Briefs, IEEE Transactions on, vol. 57, pp. 711-715, 2010.
[23]. S. C. Lai, S. F. Lei, C. L. Chang, C. C. Lin and C. H. Luo, “Low computational complexity, low power, and low area design for the implementation of recursive DFT and IDFT algorithms,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 56, no. 12, pp.921-925, 2009.
[24]. S. C. Lai, W. H. Juang, C. L. Chang, C. C. Lin, C. H. Luo, and S. F. Lei, “Low-Computation cycle, Power-Efficient, and Reconfigurable Design of Recursive DFT for Portable Digital Radio Mondiale Receiver,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 57, no. 8, pp. 647–651, August 2010.
[25]. S. C. Lai, W. H. Juang, C. C. Lin, C. H. Luo and S. F. Lei, “High-Throughput, Power-Efficient, Coefficient-Free and Reconfigurable Green Design for Recursive DFT in a Portable DRM Receiver,” International Journal of Electrical Engineering, vol. 18, no.3, pp. 137–145, June 2011.
[26]. S. C. Lai, Y. S. Lee and S. F. Lei, “Low-Power and Optimized VLSI Implementation of Compact RDFT Processor for the Computations of DFT and IMDCT in a DRM and DRM+ Receiver,” J. Low Power Electron. Appl., vol. 3, no. 2, pp. 99-113, May 2013.
[27]. Li, An Kai, et al. "Low-Complexity Algorithm of Recursive Analysis and Synthesis Quadrature Mirror Filterbanks for Digital Radio Mondiale." Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), 2014 Tenth International Conference on. IEEE, 2014.
[28]. Li, An-Kai, et al. "Fast algorithm and common structure design of recursive analysis and synthesis quadrature mirror filterbanks for digital radio mondiale."Circuits and Systems (ISCAS), 2014 IEEE International Symposium on. IEEE, 2014.