簡易檢索 / 詳目顯示

研究生: 陳光熙
Chen, Kuang-Hsi
論文名稱: 中鋼煉焦場導焦車驅動用感應馬達之特性分析
Characteristic Analyses of Induction Motors for Driving Coke Oven Plant’s Coke Transfer Cars of China Steel Corporation
指導教授: 王醴
Wang, Li
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 150
中文關鍵詞: 數值模擬現場量測合成等效模型感應馬達
外文關鍵詞: numerical simulation, field measurement, aggregate equivalent model, induction machines
相關次數: 點閱:113下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文旨在研究中國鋼鐵公司煉焦場導焦車驅動用感應馬達之暫態及穩態特性。在感應馬達基本特性分析上,電機之參數及使用模型的適當與否,對系統的特性研究相當重要。本文除了使用交直軸感應電機等效電路模型探討穩態特性外,並採用a-b-c軸三相感應電機模型探討感應電機在本研究系統下之三相暫態及動態特性。
      本文中將採用四組小型獨立變頻器控制四組獨立感應馬達以及使用單一較大型變頻器控制四組並聯運轉感應馬達,分別針對感應馬達的輸出特性做比較分析。由系統實際現場量測與計算機模擬之輔助對照,可驗證本系統所推導之感應電機等效電路模型與參數的可用性及可行性。

      This thesis investigates the characteristics of induction motors (IMs) for driving coke oven plant’s coke transfer cars of China Steel Corporation (CSC). The employed mathematical model and parameters of the studied IMs are very important for performance analyses of the studied system. The induction machine’s q-d axis and a-b-c axis equivalent-circuit models are respectively utilized to analyze both transient and dynamic behaviors of the studied IMs.
      This thesis discusses and compares the output performance of four independent IMs driven by four independent small frequency converters and four parallel-operated IMs driven by a large frequency converter. By comparing field measured results and computer simulated outcomes, it can be confirmed that the employed model and parameters for the studied IMs are proper and feasible.

    中文摘要 Ⅰ 英文摘要 Ⅱ 誌謝 Ⅲ 目錄 Ⅳ 圖目錄 Ⅶ 表目錄 Ⅸ 符號說明 Ⅹ 第一章 緒論 1 1-1 研究動機 1 1-2 相關文獻回顧 3 1-3 內容大綱 7 第二章 煉焦工場系統作業流程及感應電機直接轉矩控制之原理及其分析 9 2-1 前言 9 2-2 系統作業流程及行車系統架構 9 2-3 直接轉矩控制之理論基礎及特性分析 13 2-4 向量控制與直接轉矩控制方式之分析 28 第三章 感應電機數學模型之建立 33 3-1 前言 33 3-2 單機與四機並聯等效模型推導 33 3-3 電源經整流-換流器供應負載之系統數學模型建立 43 3-3-1 感應電動機之a-b-c軸模型 44 3-3-2 感應電動機之q-d軸模型 49 3-3-3 整流器之a-b-c軸 55 3-3-4 換流器之a-b-c軸模型 59 3-4 感應電動機之參數獲得 62 3-5 實測與模擬結果對照 67 第四章 單一整流-換流器連接聚集感應電機之模擬分析 74 4-1 前言 74 4-2 電磁暫態程式(EMTP)模擬軟體簡介 74 4-3 有載起動及剎車特性分析 81 4-3-1 有載起動 81 4-3-2 剎車作動 85 4-4 三相平衡及不平衡負載分析 89 4-4-1 三相輸入電源側之平衡分析 89 4-4-2 三相輸入電源側不平衡分析 92 4-4-3 三相接地故障 95 4-4-4 單線接地故障 98 4-4-5 線碰線故障 101 4-4-6 負載不平衡 104 第五章 整流-換流器連接感應電機之實測分析 107 5-1 前言 107 5-2 單一小型變頻器控制單一感應馬達之分析 107 5-3 單一大型變頻器控制四組並聯馬達之分析 121 5-4 單一大型變頻器與四組小型變頻器控制馬 達之穩態與暫態特性比較分析 134 第六章 結論與未來研究方向 139 6-1 結論 139 6-2 未來研究方向 140 參考文獻 142 附 錄 146 作者自述 150

    [1] I. Takahashi and A. Asakawa, “Ultra-Wide Speed Control of an Induction Motor Covered 106 Range,” IEEE Trans. Industry Applications, vol. IA 25, 1987, pp. 227-232.
    [2] M. Depenbrock, “Direktr Selbstregelung (DSR) fűr hochdynamische Drehfeldantriebe mit Stromrichterspeisung,” ETZ Archiv, vol. 7, Part 7, 1988, pp. 211-218.
    [3] P. Tiitinen and V. Manninen, “DTC, Direct Torque control-Inverter and Converter Control Strategies,” International Aegean Conference on Electrical Machines and Power Electronics, ACEMP ’95.
    [4] P. Tiitinen, “The next motor control method-DTC direct torque control,” in Proc. Ind. Conf. Power Electronics, Drive and Energy System of Industrial Growth, Delhi, India, 1996, pp. 37-43.
    [5] F. Blaschke, Das Prinzip der Feld-orientierung, die Grundlage fűr die Transvector-Regelung von Dreh-Feldmaschinen. Siemens-Z. 45, 1971, pp. 757-760.
    [6] M. Depenbrok, “Direct Self-Control (DSC) of inverter-fed induction machine,” IEEE Trans. Power Electronics, vol. PE3, no. 4, Oct. 1988, pp. 420-429.
    [7] J. N. Nash, “Direct torque control, induction motor vector control without and encoder,” IEEE Trans. Industry Applications, vol. 33, no. 2, March/April 1997, pp. 333-341.
    [8] G. Buja, D. Casadei, and G. Serra, “DTC-based strategies for induction motor drives,” in Conf. Proc. of IECON’97, 1997, pp. 1506-1516.
    [9] G. Buja, D. Casadei, and G. Serra, “Direct torque control of induction motor drives,” Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE’97), vol. 1, July 1997, pp. TU2-TU8.
    [10] P. C. Krause, Analysis of Electric Machinery, New York: McGraw-Hill Book Company, 1987.
    [11] D. Telford, M. W. Dunnigan, and B. W. Williams, “A comparison of vector control and direct torque control of an induction machine,” IEEE 31st Annual Power Electronics Specialists Conference, PESC2000, vol. 1, 2000, pp. 421-426.
    [12] R. Ortega, N. Barabanov, G. Escobar, and E. Valderrama, “Direct torque control of induction motors: stability analysis and performance improvement,” IEEE Trans. Automatic Control, vol. 46, no. 8, Aug. 2001, pp. 1209-1222.
    [13] H. L. Fleuy, “Behavioral modeling and simulation of a direct-torque-control induction motor drive using PSPICE,” Proceedings of the IEEE 25th Annual Conference on Industrial Electronic, IECON’99, vol. 3, 1999, pp. 1403-1408.
    [14] A. Purcell and P. P. Acarnley, “Enhanced inverter switching for fast response direct torque control of induction motor drives,” IEEE Trans. Power Electronics, vol. 16, no. 3, May 2001, pp. 1245-1252.
    [15] T. K. Fellow and T. Kai, “A method for aggregation of a group of induction motor loads,” IEEE Trans. Power Systems, vol. 9, no. 4, Nov. 2000, pp. 1683-1688.
    [16] M. M. Abdel Hakim and G. J. Berg, “Dynamic single-unit representation of induction motor groups,” IEEE Trans. Power Apparatus and Systems, vol. 95, no. 1, Jan./Feb. 1976, pp. 155-165.
    [17] I. Takahashi and T. Noguchi, “A new quick response and high- efficiency control strategy of an induction motor,” IEEE Trans. Industry Applications, vol. 22, no. 5, Sept./Oct. 1986, pp. 820-827.
    [18] T. G. Habetler, F. Profumo, and M. Pastorelli, L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Trans. Industry Applications, vol. 28, no. 5, Sept./Oct. 1992, pp. 1045-1053.
    [19] I. Ludtke and M. G. Jayne, “Direct torque control of induction motors,” IEE Colloquium on Vector Control and Direct Torque Control of Induction Motors, 27 Oct. 1995, pp. 6/1-6/6.
    [20] I. Ludtke and M. G. Jayne, “A new direct torque control Strategy,” IEE Colloquium on Advances in Control Systems for Electric Drives, 24 May 1995, pp. 5/1-5/4.
    [21] J. R. G. Schofield, “Direct torque control-DTC of induction motors,” IEE Colloquium on Vector Control and Direct Torque Control of Induction Motors, 27 Oct. 1995, pp. 1/1-1/3.
    [22] D. Casadei, G. Grandi, G. Serra, and A. Tani, “Effects of flux and torque hysteresis band amplitude in direct torque control of induction machines,” Proc. of IECON’94, 1994, pp. 299-304.
    [23] R. Ortega, G. Escobar, and N. Barabanov, “Direct torque control of induction motors: stability analysis and performance improvement,” Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (ISIE 2000), vol. 1, 2000, pp. 259-264.
    [24] Y. A. Chapuis and D. Roye, “Direct torque control and current limitation method in start up of an induction machine,” IEE Conf. Power Electronics and Variable Speed Drives, 21-23 Sept. 1998, no. 456, pp. 451-455.
    [25] P. Tiitinen, P. Pohkalainen, and J. Lalu, “The next generation motor control method: Direct torque control (DTC),” EPE Journal, vol. 5, no.1, March 1995, pp. 14-18.
    [26] S. Wade, M. W. Dunnigan, and B. W. Williams, “Improving the accuracy of the rotor resistance estimate for vector controlled induction machines,” IEE Proc.-Electr. Power Appl., vol. 144, no. 5, Sept. 1997, pp. 285-294.
    [27] I. Takahashi and Y. Ohmori, “High performance direct torque control of an induction motor,” IEEE Trans. Industry Applications, vol. 25 no. 2, 1989, pp. 257-264.
    [28] Hoang Le-Huy, “Comparison of field-oriented control and direct torque control for induction motor drives,” in Conference Record of IEEE Industry Applications Society Annual Meeting, 1999, pp. 1245-1252.
    [29] E. Flach and R. Hoffmann, “Direct mean torque control of induction motor,” in Proc. European Power Electronics and Applications (EPE’97) Trondheim, Norway, Sept. 1997, pp. 3672-3677.
    [30] J. Steinke, C. Stulz, and P. Pohjalainen, “Use of a LC filter to achieve a motor friendly performance of the PWM voltage source inverter,” in Proc. 1997 Int. Electric Mach. Drives Conf., 2001.
    [31] L. Wang, “A comparative study of damping schemes on damping generator oscillations,” IEEE Trans. Power Systems, vol. 8, no. 2, 1993, pp. 613-619.
    [32] Y. Y. Hsu and L. Wang, “Modal control design of an HVDC system for the damping of subsynchronous oscillations,” IEE Proceedings, Part C, vol. 136, no. 2, 1989, pp. 76-86.
    [33] Y. Y. Hsu and L. Wang, “Damping of a parallel ac-dc power system using PID power system stabilizers and rectifier current regulators,” IEEE Trans. Energy Conversion, vol. 3, no. 3, 1988, pp. 540-549.
    [34] 羅勤先(譯),“新一代的交流馬達控制法—直接轉矩控制(DTC)” 電機月刊,第六卷第一期,1996年1月號。
    [35] 電磁暫態模擬程式參考使用手冊。
    [36] H. K. Lauw and W. S. Meyer, “Universal machine modeling for the representation of rotating electric machinery in an electromagnetic transients program,” IEEE Trans. Power Apparatus and Systems, vol. 101, no. 6, June 1982, pp. 1342-1350.
    [37] P. L. Sorensen, “Universal machine modeling in the electromagnetic transients program,” EMTP Newsletter, March 1986.
    [38] K. U. Leuven EMTP Center, Alternative Transients Program Rule Book, Leuven EMTP Center, Belgium, 1987.
    [39] 楊煌佑,三相感應發電機並聯市電之不平衡分析,國立成功大學,電機工程研究所,九十學年度碩士論文。
    [40] 黃群欽,西門子變頻器中文參考使用手冊。
    [41] ABB, ACS 600 Single Drive Manuals。
    [42] ABB, SAMI STAR Frequency Converters Manuals。

    下載圖示 校內:2005-07-19公開
    校外:2005-07-19公開
    QR CODE