簡易檢索 / 詳目顯示

研究生: 陳則安
Chen, Tse-An
論文名稱: 應用於居家照護之自動化電化學阻抗頻譜量測系統設計
Design of Automatic Electrochemical Impedance Spectroscopy Measurement System for Home-Based Health Care
指導教授: 魏嘉玲
Wei, Chia-Ling
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 106
中文關鍵詞: 生物醫學積體電路電阻抗頻譜頻率響應分析儀人類血清白蛋白斬波器直流伺服迴路類比除法器時間數字轉換器逐次逼近
外文關鍵詞: Biomedical integrated circuits, electrical impedance spectroscopy, frequency response analyzer, human serum albumin, chopper, dc servo loop, analog divider, time-to-digital converter, successive approximation
相關次數: 點閱:107下載:19
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 2019年新冠病毒的大流行改變了大家的生活型態,人們減少前往醫院以避免受到感染或是消耗貴重的醫療資源。因此,居家健康檢測與照護產品受到越來越多關注。
    本文提出三個可用於居家檢測採用比較式頻率響應分析法的自動化電化學阻抗頻譜量測系統版本。這些系統包含一顆電化學阻抗頻譜訊號處理晶片、一些離散元件、一組資料擷取裝置以及一台筆電。其中第三版本的晶片是由三個主要功能區塊組成:一組可編程的寬頻弦波產生器、兩套可調式帶通濾波器以及一個阻抗數位轉換器。所使用的製程為台灣積體電路公司0.35μm 2P4M 3.3.V混合訊號製程,晶片面積為2.07×1.68 mm2。整套系統已透過離散電阻、電容以及實際人類血清白蛋白溶液進行測試與驗證。
    此外,一些可以提升系統準確度以及優化系統複雜度的電路被提出。其中,整合斬波電路的全差分差動放大器可用來解決放大器的偏移電壓,而直流伺服迴路則可被用來消除系統不想要的低頻雜訊。另外,數位輸出的脈衝式類比除法器可以執行除法並提供數位輸出,可簡化後端訊號處理的流程。最後,一個十位元面積優化的循環路徑交換式逐次逼近時間數位轉換器被提出。與其他架構相比,其延遲元件的數量減少了至少50%。與前面提出的系統相比,可用來取代阻抗量測系統中的相位-數位轉換器。

    The pandemic of the coronavirus disease 2019 (COVID-19) has changed our life, and people tend to avoid going to the hospital. Therefore, home-care biomedical electronic products have drawn more and more attention.
    Three different generations of electrochemical impedance spectroscopy (EIS) measurement system based on comparative frequency response analysis method are proposed. These systems are composed of an EIS signal processing chip, some discrete circuits, a data acquisition module, and a laptop. The proposed 3rd-version EIS signal processing chip contains three main functional blocks: a wide-range programmable sinusoidal waveform synthesizer, two tunable bandpass filters, and an impedance-to-digital converter, and it was fabricated by using a 0.35μm 2P4M 3.3V mixed-signal polycide process. The die area of this chip is 2.07×1.68 mm2. The proposed EIS measurement system has been tested and verified by measuring resistance/capacitance circuits and real human serum albumin solutions.
    Moreover, several circuits have been proposed to improve the accuracy of the system and/or optimize the complexity of the system. Among them, a fully differential difference amplifier with choppers is proposed to remove op offset, and a dc servo loop can be used to eliminate the undesired low-frequency signals. Besides, the concept of pulse-based divider with analog inputs and digital output is also proposed, and it has the functions of a divider and an analog-to-digital converter. At last, a 10-bit area-efficient cyclic path-swapping successive approximation time-to-digital converter (CPSSA-TDC) has also been proposed in this work. Compared to the other state-of-the-art TDCs, the proposed CPSSA-TDC reduces the number of delay cells by at least 50 %. Furthermore, it can be used to replace the phase-to-digital converter of the impedance measurement system.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Organization of the Dissertation 3 Chapter 2 1st Generation of EIS Measurement System 4 2.1 Comparative Frequency Response Analysis Method 5 2.2 System Overview of 1st Generation System 8 2.2.1 Block Diagram of the Proposed System 8 2.2.2 Instrumentation Amplifier 9 2.2.3 Magnitude Detector 10 2.2.4 Phase Detector 12 2.3 Simulation Results 13 2.3.1 Instrumentation Amplifier 13 2.3.2 Magnitude Detector 14 2.3.3 Phase Detector 15 2.3.4 Overall System 15 2.4 Summary 17 Chapter 3 2nd Generation of EIS System with an IDC 18 3.1 Background on Magnitude Detectors 21 3.2 Circuit Design 23 3.2.1 Magnitude-to-Digital Converter 24 3.2.2 Phase-to-Digital Converter 28 3.3 Measured Results 32 3.3.1 Magnitude-to-Digital Converter 32 3.3.2 Phase-to-Digital Converter 36 3.3.3 Electrochemical Experimental Results 39 3.4 Summary 42 Chapter 4 3rd Generation of EIS Measurement System for Home-Based Health Care 43 4.1 Circuit Implementations 45 4.1.1 Programmable Sinusoidal Waveform Synthesizer 46 4.1.2 Control and Readout Block 47 4.1.3 Tunable Band-Pass Filters 52 4.1.4 Impedance-to-Digital Converter 53 4.1.5 Flow Chart and Signals Timing Diagram 54 4.2 Results and Discussion 57 4.2.1 Electrical Experimental Tests 58 4.2.2 Electrochemical Experiments 60 4.3 Summary 65 Chapter 5 Additional Circuits for Improving the Performance of Home Care System 66 5.1 Fully Differential Difference Amplifier with Choppers 67 5.1.1 Circuit Implementations 68 5.1.2 Measured Results 69 5.2 DC Servo Loop 70 5.2.1 Circuit Implementations 71 5.2.2 Measured Results 74 5.3 Pulse-Based Analog Divider with Digital Output 77 5.3.1 Main Concept 77 5.4 Delay-Cell-Efficient Successive Approximation TDC with Cyclic Path-Swapping Method 79 5.4.1 Background on TDC 80 5.4.2 Fundamentals of Successive Approximation 81 5.4.3 Cyclic Path-Swapping Successive Approximation Method 84 5.4.3.1 Number of Delay Cells 85 5.4.4 Circuit Design 87 5.4.4.1 Monostable 87 5.4.4.2 Digital-to-Time Converter 88 5.4.5 Simulation and Comparison 89 Chapter 6 Conclusions and Future Work 91 6.1 Conclusions 91 6.2 Future Work 92 References 93 List of Publication 106

    References
    [1] A. Hassibi and T. H. Lee, “A programmable 0.18-μm CMOS electrochemical sensor microarray for biomolecular detection,” IEEE Sens. J., vol. 6, no. 6, pp. 1380–1388, Dec. 2006.
    [2] C. H. Chen, R. Z. Hwang, L. S. Huang, S. M. Lin, H. C. Chen, Y. C. Yang, Y. T. Lin, S. A. Yu, Y. H. Wang, N. K. Chou, and S. S. Lu, “A wireless bio-MEMS sensor for C-reactive protein detection based on nanomechanics,” IEEE Trans. Biomed. Eng., vol. 56, no. 2, pp. 462–470, Feb. 2009.
    [3] A. Gore, S. Chakrabartty, S. Pal, and E. C. Alocilja, “A multichannel femtoampere-sensitivity potentiostat array for biosensing applications,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 53, no. 11, pp. 2357–2363, Nov. 2006.
    [4] B. L. Hassler, R. M. Worden, A. J. Mason, P. Kim, N. Kohli, J. G. Zeikus, M. Laivenieks, and R. Y. Ofoli, “Biomimetic interfaces for a multifunctional biosensor array microsystem,” in Proc. IEEE Int. Conf. Sensors, Vienna, Austria, 2004, pp. 991–994.
    [5] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard, “Active CMOS sensor array for electrochemical biomolecular detection,” IEEE J. Solid-state Circuits, vol. 43, no. 8, pp. 1859–1871, Aug. 2008.
    [6] H. M. Jafari, K. Abdelhalim, L. Soleymani, E. H. Sargent, S. O. Kelley, and R. Genov, “Nanostructured CMOS wireless ultra-wideband labelfree PCR-free DNA analysis SoC,” IEEE J. Solid-State Circuits, vol. 49, no. 5, pp. 1223–1241, May 2014.
    [7] A. Manickam, A. Chevalier, M. McDermott, A. D. Ellington, and A. Hassibi, “A CMOS electrochemical impedance spectroscopy (EIS) biosensor array,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 379–390, Dec. 2010.
    [8] M. Pramod, K. Ranjit, N. Bhat, G. Banerjee, B. Amrutur, K.N. Bhat, and P. C. Ramamurthy, "A CMOS gas sensor array platform with fourier transform based impedance spectroscopy," IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 59, no. 11, pp. 2507–2517, Nov. 2012.
    [9] S. Malik, K. Kishore, T. Islam, Z. H. Zargar, and S. A. Akbar, “A time domain bridge-based impedance measurement technique for wide-range lossy capacitive sensors,” Sens. & Act. A, vol. 234, pp. 248–262, Oct. 2015.
    [10] H. Jafari, L. Soleymani, and R. Genov, “16-Channel CMOS impedance spectroscopy DNA analyzer with dual-slope multiplying ADCs,” IEEE Trans. Biomed. Circuits Syst., vol. 6, no. 5, pp. 468–478, Oct. 2012.
    [11] C. Yang, S. R. Jadhav, R. M. Worden, and A. J. Mason, “Compact low-power impedance-to-digital converter for sensor array microsystems,” IEEE J. Solid-State Circuits, vol. 44, no. 10, pp. 2844–2855, Sep. 2009.
    [12] A. A. Helmy, H.-J. Jeon, Y.-C. Lo, A. J. Larsson, R. Kulkarni, J. Kim, J. Silva-Martinez, and K. Entesari, “A self-sustained CMOS microwave chemical sensor using a frequency synthesizer,” IEEE J. Solid-State Circuits, vol. 47, no. 10, pp. 2467–2483, Oct. 2012.
    [13] X. Yuan, H. Wang, J. C. Sun, and J. Zhang, “AC impedance technique in PEM fuel cell diagnosis—A review,” Int. J. Hydrogen Energy, vol. 32, no. 17, pp. 4365–4380, Dec. 2007.
    [14] A. Yúfera, A. Rueda, J. M. Muñoz, R. Doldán, G. Léger, and E. O. Rodríguez-Villegas, “A tissue impedance measurement chip for myocardial ischemia detection,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 12, pp. 2620–2628, Dec. 2005.
    [15] A. S. Hamdy, E. El-Shenawy, and T. El-Bitar, “Electrochemical impedance spectroscopy study of the corrosion behavior of some niobium bearing stainless steels in 3.5% NaCl,” Int. J. Electrochem. Sci., vol. 1, pp. 171–180, 2006.
    [16] B. V. Ratnakumar, M. C. Smart, S. Surampudi, “Electrochemical impedance spectroscopy and its applications to lithium ion cells,” in Proc. 17th Annual Battery Conf. on Applications and Advances, USA, Jan., 2002, pp. 273–277.
    [17] S. Dhillon and R. Kant, “Theory for electrochemical impedance spectroscopy of heterogeneous electrode with distributed capacitance and charge transfer resistance,” J. Chem. Sci., vol. 129, no. 8, pp. 1277–1292, Aug., 2017.
    [18] A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed. Hoboken, NJ, USA: Wiley, 2001.
    [19] C. Yang, D. Rairigh, and A. Mason, “Fully integrated impedance spectroscopy systems for biochemical sensor array,” in Proc. IEEE Conf. Biomed. Circuits Syst., Nov. 2007, pp. 21–24.
    [20] D. Rairigh and A. Mason, “Compact impedance spectroscopy for high density sensor arrays,” Presented at the IEEJ Int. Analog VLSI Workshop, Nov. 2007.
    [21] C. Yang, D. Rairigh, and A. Mason, “On-chip electrochemical impedance spectroscopy for biosensor arrays,” in Proc. IEEE Int. Conf. on Sensors, Oct. 2006, pp. 93-96.
    [22] D. Rairigh, A. Mason, and C. Yang, “Analysis of on-chip impedance spectroscopy methodologies for sensor arrays,” Sensor Lett., vol. 4, no. 4, pp. 398–402, Sep., 2006.
    [23] Analog Devices, Norwood, MA, USA. (2013). Datasheet, AD5933, 1 MSPS, 12-Bit Impedance Converter, Network Analyzer. [Online]. Available: http://www.analog.com/
    media/en/technical-documentation/data-sheets/AD5933.pdf
    [24] C. L. Wei, C. E. Chen, I T. Tseng, and C. H. Chen, “Real-time DSP-based conductance catheter measurement system for estimating ventricular volumes,” IEEE Trans. Instrum. Meas., vol. 58, no. 10, pp. 3583–3591, 2009.
    [25] T. A. Chen, C. L. Wei, T. H. Liu, R. Y. Lin, and B. D. Liu, “Dual-mode urinalysis chip by using electrochemical impedance spectroscopy,” in Proc. IEEE Int. Conf. Intell. Comput. Bio-Med. Instrum., Dec. 2011, pp. 268–271.
    [26] T. A. Chen, C. L. Wei, and B. D. Liu, “Comparative frequency response analysis system for electrochemical impedance spectroscopy measurements,” in Proc. 38th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Aug. 2016, pp. 1910–1913.
    [27] X. Zou, X. Xu, L. Yao, and Y. Lian, “A 1-V 450-nW fully integrated programmable biomedical sensor interface chip,” IEEE J. Solid-state Circuits, vol. 44, no. 4, pp. 1067–1077, Apr. 2009.
    [28] X. Y. Xu, X. D. Zou, L. B. Yao, and Y. Lian, “A 1-V 450-nW fully integrated biomedical sensor interface system,” in Proc. 2008 Symp. VLSI Circuits, Jun. 2008, pp. 78–79.
    [29] Jones and M. Stitt, “Precision absolute value circuits,” Application Bulletin from BURR-BROWN, Dec. 1997.
    [30] J. Comer, D. T. Comer, B. K. Casper, and J. R. Gonzalez, "An integrable single-pole lowpass filter for low-frequency operation," Int. J. Electron., vol. 83, no. 1, pp. 49–54, Jul. 1997.
    [31] T. G. Kottam, “Measurement of electrical admittance to study the onset and progression of myocardial ischemia,” Ph.D. dissertation, Dept. Biomed. Eng., University of Texas at Austin, Dec. 2007.
    [32] C. L. Wei, Y. W. Wang, and B. D. Liu, “Wide-range filter-based sinusoidal wave synthesizer for electrochemical impedance spectroscopy measurements,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 3, pp. 442–450, 2014.
    [33] CH Instruments, Austin, Texas, USA. User's Manual, Model 600C Series Electrochemical Analyzer/Workstation User's Manual. [Online]. Available: http://www.
    vtpup.cz/common/manual/PrF_labsystruktan_C-HInstruments_600C_manual_EN.pdf
    [34] B. Rumberg and D. W. Graham, “A low-power magnitude detector for analysis of transient-rich signals,” IEEE J. Solid-State Circuits, vol. 47 no. 3, pp. 676–685, Mar. 2012.
    [35] C. W. Chang, C. L. Ni, J. C. Tsai, Y. T. Chen, C. Y. Chen, K. H. Chen, L. D. Chen, and C. C. Yang, “High-PF and ultra-low-THD power factor correction controller by sinusoidal-wave synthesis and optimized THD control,” in Proc. IEEE Int. Symp. Circuits. Syst., May 2013, pp. 917–920.
    [36] S. B. Park, J. E. Wilson, and M. Ismail, “The CHIP - peak detectors for multistandard wireless receivers,” IEEE Circuits Devices Mag., vol. 22, no. 6, pp. 6–9, 2006.
    [37] G. D. Geronimo, A. Kandasamy, and P. O’Connor, “Analog peak detector and derandomizer for high-rate spectroscopy,” IEEE Trans. Nucl. Sci., vol. 49, no. 4, pp. 1769–1773, Aug. 2002.
    [38] D. K. Nordstrom, “Thermochemical redox equilibria of ZoBell's solution,” Geochim. Cosmochim. Acta., vol. 41, pp. 1835–1841, 1977.
    [39] T. Tn Lien, N. Xuan Viet, M. Chikae, “Development of label-free impedimetric hCG-immunosensor using screen-printed electrode,” Biosens. Bioelectron., vol. 2, no. 3, pp. 1000107, 2011.
    [40] H.-C. Wang, H. Zhou, B. Chen, P. M. Mendes, J. S. Fossey, T. D. James, and Y.-T. Long, “A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations,” Analyst, vol. 138, no. 23, pp. 7146–7151, 2013.
    [41] J. Colomer-Farrarons and P. L. Miribel-Catala, A CMOS Self-Powered Front-End Architecture for Subcutaneous Event-Detector Devices: Three-Electrodes Amperometric Biosensor Approach. New York: Springer, 2011.
    [42] C. Y. Huang, T. C. Tsai, J. Tomas, M. H. Lee, B. D. Liu, and H. Y. Lin, “Urinalysis with molecularly imprinted poly(ethylene-co-vinyl alcohol) potentiostat sensors,” Biosens. Bioelectron., vol. 24, no. 8, pp. 2611–2617, Apr. 2009.
    [43] B. Khadro, C. Sanglar, A. Bonhomme, A. Errachid, and N. Jaffrezic-Renault, “Molecular imprinted polymers (MIP) based electrochemical sensor for detection of urea and creatinine,” Procedia Eng., vol. 5, pp. 371–374, 2010.
    [44] X. M. He and D. C. Carter, “Atomic structure and chemistry of human serum albumin,” Nature, vol. 358, pp. 209–215, Jul. 1992.
    [45] Y. Long, L. Nie, J. Chen, and S. Yao, “Piezoelectric quartz crystal impedance and electrochemical impedance study of HSA–diazepam interaction by nanogold-structured sensor,” J. Colloid Interface Sci., vol. 263, no. 1, pp. 106–112, 2003.
    [46] H. von Schenck, “Validation of albumin determined in urine with the HemoCue point-of-care analyser,” Scand. J. Clin. Lab. Invest., vol. 63, pp. 119–126, Dec. 2003.
    [47] H. L. Hillege, W. M. T. Janssen, A. A. A. Bak, G. F. H. Diercks, D. E. Grobbee, H. J. G. M. Crijns, W. H. Van Gilst, D. De Zeeuw, and P. E. De Jong, “Microalbuminuria is common, also in a nondiabetic, nonhypertensive population, and an independent indicator of cardiovascular risk factors and cardiovascular morbidity,” J. Intern. Med., vol. 249, pp. 519–526, 2001.
    [48] S. Ito and D. Yamamoto, “Mechanism for the color change in bromocresol purple bound to human serum albumin,” Clin. Chim. Acta, vol. 411, no. 3–4, pp. 294–295, Feb. 2010.
    [49] S. Ito. “Structural features of bromocresol purple and its binding sites on human serum albumin for a proton-exchange reaction,” Int. J. Pharm. Chem., vol. 6, no. 3, pp. 71–77, 2016.
    [50] P. G. Hill, “The measurement of albumin in serum and plasma,” Ann. Clin. Biochem., vol. 22, no. 6, pp. 565–578, Nov. 1985.
    [51] A. F. Ogata, J. M. Edgar, S. Majumdar, J. S. Briggs, S. V. Patterson, M. X. Tan, S. T. Kudlacek, C. A. Schneider, G. A. Weiss, and R. M. Penner, “Virus-Enabled biosensor for human serum albumin,” Anal. Chem., vol. 89, no. 2, pp. 1373−1381, Jan. 2017.
    [52] Gamry Instruments Inc., Warminster, PA, USA. (2010). EIS300TM Electrochemical Impedance Spectroscopy Software. [Online]. Available: https://www.gamry.com/assets/ Uploads/EIS300-Product-Brochure.pdf
    [53] A. Fatoni, A. Numnuam, P. Kanatharana, W. Limbut, and P. Thavarungkul, “A novel molecularly imprinted chitosan–acrylamide, graphene, ferrocene composite cryogel biosensor used to detect microalbumin,” Analyst, vol. 139, no. 23, pp. 6160–6167, 2014.
    [54] M. Cieplak, K. Szwabinska, M. Sosnowska, B. K. C. Chandra, P. Borowicz, K. Noworyta, F. D’Souza, and W. Kutner, “Selective electrochemical sensing of human serum albumin by semi-covalent molecular imprinting,” Biosens. Bioelectron., vol. 74, pp. 960–966, Dec. 2015.
    [55] M. Dabrowski, M. Cieplak, P. S. Sharma, P. Borowicz, K. Noworyta, W. Lisowski, F. D’Souza, A. Kuhn, and W. Kutner, “Hierarchical templating in deposition of semi-covalently imprinted inverse opal polythiophene film for femtomolar determination of human serum albumin,” Biosens. Bioelectron., vol. 94, pp. 155–161, Aug. 2017.
    [56] Z. Stojanovic, J. Erdőssy, K. Keltai, F. W. Scheller, and R. E. Gyurcsányi, “Electrosynthesized molecularly imprinted polyscopoletin nanofilms for human serum albumin detection,” Anal. Chim. Acta, vol. 977, pp. 1–9, Jul. 2017.
    [57] Y. Yun, A. Bhattacharya, N. Watts, and M. Schulz, “A label-free electronic biosensor for detectionof bone turnover markers,” Sensors, vol. 9, pp. 7957–7969, 2009.
    [58] R. Raut and M. N. S. Swamy, “Appendix C: Element Values for All-Pole Double-Resistance-Terminated Low-Pass Lossless Ladder Filters,” in Modern Analog Filter Analysis and Design: A Practical Approach, Weinheim, Germany: Wiley-VCH, 2010, pp. 338–339.
    [59] R. Schaumann and M.E. Van Valkenburg, Design of Analog Filter. Oxford, 2010.
    [60] G. M. Jacobs, D. J. Allstot, R. W. Brodersen, and P. R. Gray, “Design techniques for MOS switched capacitor ladder filters,” IEEE Trans. Circuits Syst., vol. CAS-25, no. 12, pp. 1014–1021, Dec. 1978.
    [61] T. A. Chen, W. J. Wu, C. L. Wei, R. B. Darling, and B. D. Liu, “Novel 10-bit impedance-to-digital converter for electrochemical impedance spectroscopy measurements,” IEEE Trans. Biomed. Circuits Syst., vol. 11, no. 2, pp. 370–379, Apr. 2017.
    [62] P. Ying, A. S. Viana, L. M. Abrantes, and G. Jin, “Adsorption of human serum albumin onto gold: A combined electrochemical and ellipsometric study,” J. Colloid Interface Sci., vol. 279, no. 1, pp. 95–99, Nov. 2004.
    [63] P. Kassanos, L. Constantinou, I. F. Triantis, and A. Demosthenous, “An integrated analog readout for multi-frequency bioimpedance measurements,” IEEE Sensors J., vol. 14, no. 8, pp. 2792–2800, Aug. 2014.
    [64] M. Bakhshiani, M. A. Suster, and P. Mohseni, “A broadband sensor interface IC for miniaturized dielectric spectroscopy from MHz to GHz,” IEEE J. Solid-State Circuits, vol. 49, pp. 1669–1681, 2014.
    [65] M. Crescentini, M. Bennati, and M. Tartagni, “A high resolution interface for Kelvin impedance sensing,” IEEE J. Solid-State Circuits, vol. 49, no. 10, pp. 2199–2212, Oct. 2014.
    [66] K. Georgakopoulou, C. Spathis, N. Petrellis, and A. Birbas, “A capacitive-to-digital converter with automatic range adaptation for readout instrumentation,” IEEE Trans. Instrum. Meas., vol. 65, no. 2, pp. 336–345, Feb. 2016.
    [67] P. Vooka and B. George, “A direct digital readout circuit for impedance sensors,” IEEE Trans. Instrum. Meas., vol. 64, no. 4, pp. 902–912, Apr. 2015.
    [68] S. Hersek, H. Töreyin, and O. T. Inan, "A robust system for longitudinal knee joint edema and blood flow assessment based on vector bioimpedance measurements," IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 3, pp. 545–555, Jun. 2016.
    [69] A. Sun, A. G. Venkatesh, and D. A. Hall, "A multi-technique reconfigurable electrochemical biosensor: enabling personal health monitoring in mobile devices", IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 5, pp. 945–954, Oct. 2016.
    [70] E. Sackinger and W. Guggenbuhl, “A versatile building block: The CMOS differential difference amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, no. 2, pp. 287–294, Apr. 1987.
    [71] C. C. Enz, E. A. Vittoz, and F. Krummenacher, “A CMOS chopper amplifier,” IEEE J. Solid-State Circuits, vol. SC-22, no. 3, pp. 335–342, Jun. 1987.
    [72] A. Bakker, K. Thiele, J. Huijsing, “A CMOS nested-chopper instrumentation amplifier with 100-nV Offset,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1877–1883, Dec. 2000.
    [73] C. L. Wei, C. F. Lin, and I T. Tseng, “A novel MEMS respiratory flow sensor,” IEEE Sensors Journal, vol. 10, no. 1, pp. 16–18, 2010.
    [74] C. L. Wei, Y. C. Lin, T. A. Chen, R. Y. Lin, and T. H. Liu “Respiration detection chip with integrated temperature-insensitive MEMS sensors and CMOS signal processing circuits,” IEEE Trans. Biomed. Circuits Syst., vol. 9, no. 1, pp. 105–112, 2015.
    [75] P. C. Wu, B.D. Liu, S. H. Tseng, H. H. Tsai, and Y. Z. Juang, “Digital offset trimming techniques for CMOS MEMS accelerometers,” IEEE Sensors J., vol. 14, pp. 570–577, Feb. 2014.
    [76] C. Enz and G. C. Temes, “Circuit techniques for reducing the effects of op-amp imperfections: autozeroing, correlated double sampling, and chopper stabilization,” in Proc. IEEE, vol. 84, no. 11, Nov. 1996, pp.1584–1614.
    [77] J. Wu, G. K. Fedder, and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/√Hz monolithic CMOS MEMS accelerometer,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 456–468, May 2004.
    [78] E. Spinelli, N. Martinez, M. Mayosky, and R. Pallas-Areny, “A novel fully differential biopotential amplifier with DC suppression”, IEEE Trans. Biomed. Eng., vol. 51, no. 8, pp. 1444–1448, 2014.
    [79] E. Spinelli, “High input impedance DC servo loop circuit,” Electron. Lett., wol. 50, no. 24, pp. 1808–1809, 2014.
    [80] Q. Fan, F. Sebastiano, J. H. Huijsing, and K. A. A. Makinwa, “A 1.8 W 60 nV √Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes,” IEEE J. Solid-State Circuits, vol. 46, no. 7, pp. 1534–1543, Jul. 2011.
    [81] A. Veeravalli, E. Sanchez-Sinencio, and J. Silva-Martinez, “Transconductance amplifier structures with very small transconductances: A comparative design approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 700–775, Jan. 2002.
    [82] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–965, Jan. 2003.
    [83] K. Nagaraj, “A parasitic-insensitive area-efficient approach to realizing very large time constants in switched-capacitor circuits,” IEEE Trans. Circuits Syst., vol. 36, no. 9, pp. 1210–1216, Sep. 1989.
    [84] S. W. Wang, T. A. Chen, K. H. Chen, and C. L. Wei, “Design of divider circuit for electrochemical impedance spectroscopy measurement system,” in Proc. IEEE Int. Symp. VLSI Design Autom. Test (VLSI-DAT), Hsinchu, Taiwan, Apr. 2018, pp.1–4.
    [85] K. H. Chen, T. A. Chen, and C. L. Wei, “Novel pulse-based analog divider with digital output,” IEEE Solid-State Circuits Lett., vol. 3, pp. 21–24, Jan. 2020.
    [86] P. Keränen and J. Kostamovaara, “A wide range, 4.2 ps(rms) precision CMOS TDC with cyclic interpolators based on switched-frequency ring oscillators,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 12, pp. 2795–2805, Dec. 2015.
    [87] R. Lussana, F. Villa, A. D. Mora, D. Contini, A. Farina, L. D. Sieno, and F. Zappa, “Non-contact inclusion detection in food through a single-photon time-of-flight imager,” IEEE Sensors J., vol. 17, no. 1, pp. 78–82, Jan. 2017.
    [88] S. Henzler, Time-to-Digital Converters, Springer, New York, USA, 2010.
    [89] P. Dudek, S. Szczepanski, and J.V. Hatfield, “A high-resolution CMOS time-to-digital converter utilizing a Vernier delay line,” IEEE J. Solid-State Circuits, vol. 35, no. 2, pp. 240–247, 2000.
    [90] A. Mäntyniemi, T. Rahkonen, and J. Kostamovaara, “A CMOS time-to-digital converter (TDC) based on a cyclic time domain successive approximation interpolation method,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3067–3078, Nov. 2009.
    [91] H. Chung, H. Ishikuro, and T. Kuroda, “A 10-bit 80-MS/s decision-select successive approximation TDC in 65-n CMOS,” IEEE J. Solid-State Circuits, vol. 47, no. 5, pp. 1232–1241, May 2012.
    [92] D. Kościelnik, J. Szyduczyński, D. Rzepka, W. Andrysiewicz, M. Miśkowicz, “Optimized design of successive approximation time-to-digital converter with single set of delay lines,” in Proc. IEEE EBCCSP, Jun. 2016, pp. 1–8.
    [93] K. Ragab, H. Mostafa, and A. Eladawy, “A novel 10-bit 2.8-mW TDC design using SAR with continuous disassembly algorithm,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 10, pp. 909–913, Oct. 2016.
    [94] C. C. Liu, S. J. Chang, G. Y. Huang, and Y. Z. Lin, “A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 731-740, Apr. 2010.
    [95] K. H. Chen, T. A. Chen, and C. L. Wei, “Novel pulse-based analog divider with digital output,” IEEE Solid-State Circuits Lett., vol. 3, pp. 21–24, Dec. 2020.
    [96] H. W. Lin, C. N. Su, T. A. Chen, Y. C. Chen, M. J. Syu, and C. L. Wei, “Admittance-to-digital-impedance converter for wide-frequency-range impedance measurement system,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–11, 2021, Art no. 2003911.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE